Jacek J Hawiger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8484187/publications.pdf

Version: 2024-02-01

394421 454955 2,348 31 19 30 citations g-index h-index papers 32 32 32 2906 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles. Scientific Reports, 2021, 11, 11907.	3.3	4
2	EGF receptor–mediated FUS phosphorylation promotes its nuclear translocation and fibrotic signaling. Journal of Cell Biology, 2020, 219, .	5.2	12
3	Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scandinavian Journal of Immunology, 2019, 90, e12812.	2.7	39
4	Protection from Endotoxin Shock by Selective Targeting of Proinflammatory Signaling to the Nucleus Mediated by Importin Alpha 5. ImmunoHorizons, 2019, 3, 440-446.	1.8	4
5	Heartfelt sepsis: microvascular injury due to genomic storm. Kardiologia Polska, 2018, 76, 1203-1216.	0.6	21
6	Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles. PLoS ONE, 2017, 12, e0179468.	2.5	9
7	Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2627-35.	7.1	83
8	Interleukin 2 Activates Brain Microvascular Endothelial Cells Resulting in Destabilization of Adherens Junctions. Journal of Biological Chemistry, 2016, 291, 22913-22923.	3.4	28
9	The "Genomic Storm―Induced by Bacterial Endotoxin Is Calmed by a Nuclear Transport Modifier That Attenuates Localized and Systemic Inflammation. PLoS ONE, 2014, 9, e110183.	2.5	17
10	The Adaptor CRADD/RAIDD Controls Activation of Endothelial Cells by Proinflammatory Stimuli. Journal of Biological Chemistry, 2014, 289, 21973-21983.	3.4	11
11	Nuclear Transport Modulation Reduces Hypercholesterolemia, Atherosclerosis, and Fatty Liver. Journal of the American Heart Association, 2013, 2, e000093.	3.7	20
12	Targeting Nuclear Import Shuttles, Importins/Karyopherins alpha by a Peptide Mimicking the NFîºB1/p50 Nuclear Localization Sequence. Journal of the American Heart Association, 2013, 2, e000386.	3.7	35
13	Cutting Edge: The "Death―Adaptor CRADD/RAIDD Targets BCL10 and Suppresses Agonist-Induced Cytokine Expression in T Lymphocytes. Journal of Immunology, 2012, 188, 2493-2497.	0.8	15
14	Lethality in a Murine Model of Pulmonary Anthrax is Reduced by Combining Nuclear Transport Modifier with Antimicrobial Therapy. PLoS ONE, 2012, 7, e30527.	2.5	8
15	Extended Anti-inflammatory Action of a Degradation-resistant Mutant of Cell-penetrating Suppressor of Cytokine Signaling 3. Journal of Biological Chemistry, 2010, 285, 18727-18736.	3.4	26
16	In Vivo Islet Protection by a Nuclear Import Inhibitor in a Mouse Model of Type 1 Diabetes. PLoS ONE, 2010, 5, e13235.	2.5	15
17	Intracellular Delivery of a Cell-Penetrating SOCS1 that Targets IFN-Î ³ Signaling. Science Signaling, 2009, 2, ra37.	3.6	23
18	Suppression of Acute Lung Inflammation by Intracellular Peptide Delivery of a Nuclear Import Inhibitor. Molecular Therapy, 2009, 17, 796-802.	8.2	43

#	Article	IF	CITATIONS
19	Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nature Medicine, 2005, 11, 892-898.	30.7	262
20	Receptor/Transporter-independent Targeting of Functional Peptides across the Plasma Membrane. Journal of Biological Chemistry, 2004, 279, 11425-11431.	3.4	46
21	Suppression of Staphylococcal Enterotoxin B-induced Toxicity by a Nuclear Import Inhibitor. Journal of Biological Chemistry, 2004, 279, 19239-19246.	3.4	35
22	Nuclear Import of Proinflammatory Transcription Factors Is Required for Massive Liver Apoptosis Induced by Bacterial Lipopolysaccharide. Journal of Biological Chemistry, 2004, 279, 48434-48442.	3.4	100
23	Immunology at Vanderbilt University. Immunologic Research, 2001, 23, 097-098.	2.9	0
24	Innate Immunity and Inflammation: A Transcriptional Paradigm. Immunologic Research, 2001, 23, 099-110.	2.9	203
25	Peptide-directed Suppression of a Pro-inflammatory Cytokine Response. Journal of Biological Chemistry, 2000, 275, 16774-16778.	3.4	54
26	Noninvasive intracellular delivery of functional peptides and proteins. Current Opinion in Chemical Biology, 1999, 3, 89-94.	6.1	146
27	Structure of the fibrinogen γâ€chain integrin binding and factor XIIIa crossâ€inking sites obtained through carrier protein driven crystallization. Protein Science, 1999, 8, 2663-2671.	7.6	39
28	Preparation of functionally active cell-permeable peptides by single-step ligation of two peptide modules. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9184-9189.	7.1	99
29	Cellular import of functional peptides to block intracellular signaling. Current Opinion in Immunology, 1997, 9, 189-194.	5.5	49
30	Inhibition of Nuclear Translocation of Transcription Factor NF-κB by a Synthetic Peptide Containing a Cell Membrane-permeable Motif and Nuclear Localization Sequence. Journal of Biological Chemistry, 1995, 270, 14255-14258.	3.4	858
31	Mechanisms Involved in Platelet Vessel Wall Interaction. Thrombosis and Haemostasis, 1995, 74, 369-372.	3.4	44