Erna G Kroon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8484050/publications.pdf

Version: 2024-02-01

261 papers 7,048 citations

43 h-index 66 g-index

266 all docs

266 docs citations

266 times ranked 6808 citing authors

#	Article	IF	CITATIONS
1	Equine Infectious Anemia Virus (EIAV): Evidence of Circulation in Donkeys from the Brazilian Northeast Region. Journal of Equine Veterinary Science, 2022, 108, 103795.	0.9	6
2	Children with sickle cell disease and severe COVIDâ€19 presenting single nucleotide polymorphisms in innate immune response genes – A case report. EJHaem, 2022, 3, 199-202.	1.0	2
3	Absence of yellow fever virus circulation in wildlife rodents from Brazil. Brazilian Journal of Microbiology, 2022, , 1.	2.0	O
4	Virological Surveillance of Aedes aegypti Vectors Identifies All Four Dengue Serotypes in a Hyperendemic Region. EcoHealth, 2022, , 1.	2.0	1
5	Detection of SARS-CoV-2 RNA on public surfaces in a densely populated urban area of Brazil: A potential tool for monitoring the circulation of infected patients. Science of the Total Environment, 2021, 766, 142645.	8.0	52
6	Zika and impact on the nervous system in children. , 2021, , 75-83.		0
7	Twenty Years after Bovine Vaccinia in Brazil: Where We Are and Where Are We Going?. Pathogens, 2021, 10, 406.	2.8	9
8	Why Did ZIKV Perinatal Outcomes Differ in Distinct Regions of Brazil? An Exploratory Study of Two Cohorts. Viruses, 2021, 13, 736.	3.3	5
9	Educational Approach to Prevent the Burden of Vaccinia Virus Infections in a Bovine Vaccinia Endemic Area in Brazil. Pathogens, 2021, 10, 511.	2.8	1
10	The impact of viral infections on childhood central nervous system infections. Journal of Clinical Virology, 2021, 140, 104853.	3.1	1
11	Neurological manifestations due to dengue virus infection in children: clinical follow-up. Pathogens and Global Health, 2021, 115, 476-482.	2.3	1
12	Risk factors for neurological complications in children with Flavivirus infection. Journal of NeuroVirology, 2021, 27, 609-615.	2.1	2
13	Dengue virus 3 genotype I shows natural changes in heparan sulphate binding sites, cell interactions, and neurovirulence in a mouse model. Journal of General Virology, 2021, 102, .	2.9	3
14	Neurologic Manifestations of Noncongenital Zika Virus in Children. Journal of Pediatrics, 2021, 237, 298-301.e1.	1.8	2
15	Mouse hepatitis virus: A betacoronavirus model to study the virucidal activity of air disinfection equipment on surface contamination. Journal of Virological Methods, 2021, 297, 114274.	2.1	9
16	Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses. Viruses, 2021, 13, 43.	3.3	103
17	Virtual screening of antibacterial compounds by similarity search of Enoyl-ACP reductase (Fabl) inhibitors. Future Medicinal Chemistry, 2020, 12, 51-68.	2.3	12
18	Exposure of freeâ€ranging capybaras (Hydrochoerus hydrochaeris) to the vaccinia virus. Transboundary and Emerging Diseases, 2020, 67, 481-485.	3.0	2

#	Article	IF	CITATIONS
19	Neighbor danger: Yellow fever virus epizootics in urban and urban-rural transition areas of Minas Gerais state, during 2017-2018 yellow fever outbreaks in Brazil. PLoS Neglected Tropical Diseases, 2020, 14, e0008658.	3.0	26
20	Neuroinflammation is associated with reduced SOCS2 and SOCS3 expression during intracranial HSV-1 infection. Neuroscience Letters, 2020, 736, 135295.	2.1	9
21	Absence of YF-neutralizing antibodies in vulnerable populations of Brazil: A warning for epidemiological surveillance and the potential risks for future outbreaks. Vaccine, 2020, 38, 6592-6599.	3.8	3
22	Identification of large genetic variations in the equine infectious anemia virus tat ―gag genomic region. Transboundary and Emerging Diseases, 2020, 68, 3424-3432.	3.0	3
23	Re-Emergence of Yellow Fever in Brazil during 2016–2019: Challenges, Lessons Learned, and Perspectives. Viruses, 2020, 12, 1233.	3.3	55
24	Circulation of Vaccinia virus in Southern and Southeastern wildlife, Brazil. Transboundary and Emerging Diseases, 2020, 67, 1781.	3.0	5
25	Fluorescent quantum dots-zika virus hybrid nanoconjugates for biolabeling, bioimaging, and tracking host-cell interactions. Materials Letters, 2020, 277, 128279.	2.6	6
26	High Genomic Variability in Equine Infectious Anemia Virus Obtained from Naturally Infected Horses in Pantanal, Brazil: An Endemic Region Case. Viruses, 2020, 12, 207.	3.3	7
27	Design and production of dengue virus chimeric proteins useful for developing tetravalent vaccines. Vaccine, 2020, 38, 2005-2015.	3.8	3
28	Late-Relapsing Hepatitis after Yellow Fever. Viruses, 2020, 12, 222.	3.3	12
29	Wild-Type Yellow Fever Virus RNA in Cerebrospinal Fluid of Child. Emerging Infectious Diseases, 2019, 25, 1567-1570.	4.3	13
30	Flaviviruses as agents of childhood central nervous system infections in Brazil. New Microbes and New Infections, 2019, 31, 100572.	1.6	9
31	Microscopic Analysis of the Tupanvirus Cycle in Vermamoeba vermiformis. Frontiers in Microbiology, 2019, 10, 671.	3.5	21
32	Silent Circulation of the Saint Louis Encephalitis Virus among Humans and Equids, Southeast Brazil. Viruses, 2019, 11, 1029.	3.3	9
33	Virus and microbiota relationships in humans and other mammals: An evolutionary view. Human Microbiome Journal, 2019, 11, 100050.	3.8	9
34	Tupanvirus-infected amoebas are induced to aggregate with uninfected cells promoting viral dissemination. Scientific Reports, 2019, 9, 183.	3.3	33
35	Central and peripheral nervous system involvement in Zika virus infection in a child. Journal of NeuroVirology, 2019, 25, 893-896.	2.1	7
36	Neurological manifestations of pediatric arboviral infections in the Americas. Journal of Clinical Virology, 2019, 116, 49-57.	3.1	17

3

#	Article	IF	Citations
37	Flaviviruses as agents of childhood central nervous system infections in Brazil. New Microbes and New Infections, 2019, 30, 100539.	1.6	7
38	Trapping the Enemy: Vermamoeba vermiformis Circumvents Faustovirus Mariensis Dissemination by Enclosing Viral Progeny inside Cysts. Journal of Virology, 2019, 93, .	3.4	20
39	Molecular detection and phylogeny of bovine viral diarrhea virus 1 among cattle herds from Northeast, Southeast, and Midwest regions, Brazil. Brazilian Journal of Microbiology, 2019, 50, 571-577.	2.0	2
40	Antibacterial activity of synthetic 1,3â€bis(aryloxy)propanâ€2â€amines against Gramâ€positive bacteria. MicrobiologyOpen, 2019, 8, e814.	3.0	16
41	Yellow Fever Virus Genotyping Tool and Investigation of Suspected Adverse Events Following Yellow Fever Vaccination. Vaccines, 2019, 7, 206.	4.4	6
42	First report of collapsing variant of focal segmental glomerulosclerosis triggered by arbovirus: dengue and Zika virus infection. CKJ: Clinical Kidney Journal, 2019, 12, 355-361.	2.9	16
43	Neuromyelitis optica spectrum disorder associated with Zika virus infection. Neurology: Clinical Practice, 2019, 9, e1-e3.	1.6	12
44	Circulation of Chikungunya virus East-Central-South Africa genotype during an outbreak in 2016-17 in Piaui State, Northeast Brazil. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2019, 61, e57.	1.1	12
45	Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nature Communications, 2018, 9, 749.	12.8	247
46	Using adult Aedes aegypti females to predict areas at risk for dengue transmission: A spatial case-control study. Acta Tropica, 2018, 182, 43-53.	2.0	15
47	In vitro susceptibility to ST-246 and Cidofovir corroborates the phylogenetic separation of Brazilian Vaccinia virus into two clades. Antiviral Research, 2018, 152, 36-44.	4.1	4
48	Cedratvirus getuliensis replication cycle: an in-depth morphological analysis. Scientific Reports, 2018, 8, 4000.	3.3	32
49	Vaccinia Virus among Domestic Dogs and Wild Coatis, Brazil, 2013–2015. Emerging Infectious Diseases, 2018, 24, 2338-2342.	4.3	16
50	Evidence of natural Zika virus infection in neotropical non-human primates in Brazil. Scientific Reports, 2018, 8, 16034.	3.3	68
51	A Model to Detect Autochthonous Group 1 and 2 Brazilian Vaccinia virus Coinfections: Development of a qPCR Tool for Diagnosis and Pathogenesis Studies. Viruses, 2018, 10, 15.	3.3	4
52	Equine infectious anemia virus in naturally infected horses from the Brazilian Pantanal. Archives of Virology, 2018, 163, 2385-2394.	2.1	16
53	Serological Evidence of Orthopoxvirus Circulation Among Equids, Southeast Brazil. Frontiers in Microbiology, 2018, 9, 402.	3.5	11
54	The small non-coding RNA response to virus infection in the Leishmania vector Lutzomyia longipalpis. PLoS Neglected Tropical Diseases, 2018, 12, e0006569.	3.0	10

#	Article	IF	Citations
55	The Host Factor Early Growth Response Gene (EGR-1) Regulates Vaccinia virus Infectivity during Infection of Starved Mouse Cells. Viruses, 2018, 10, 140.	3.3	6
56	Ubiquitous giants: a plethora of giant viruses found in Brazil and Antarctica. Virology Journal, 2018, 15, 22.	3.4	37
57	The spatial and temporal scales of local dengue virus transmission in natural settings: a retrospective analysis. Parasites and Vectors, 2018, 11, 79.	2.5	18
58	Detection and Molecular Characterization of Yellow Fever Virus, 2017, Brazil. EcoHealth, 2018, 15, 864-870.	2.0	11
59	Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science, 2018, 361, 894-899.	12.6	279
60	Ocular Vaccinia Infection in Dairy Worker, Brazil. Emerging Infectious Diseases, 2018, 24, 161-162.	4.3	7
61	Silent Orthohantavirus Circulation Among Humans and Small Mammals from Central Minas Gerais, Brazil. EcoHealth, 2018, 15, 577-589.	2.0	8
62	Persistence of Yellow fever virus outside the Amazon Basin, causing epidemics in Southeast Brazil, from 2016 to 2018. PLoS Neglected Tropical Diseases, 2018, 12, e0006538.	3.0	77
63	An Update on the Known Host Range of the Brazilian Vaccinia Virus: An Outbreak in Buffalo Calves. Frontiers in Microbiology, 2018, 9, 3327.	3.5	17
64	Detection of Vaccinia virus during an outbreak of exanthemous oral lesions in Brazilian equids. Equine Veterinary Journal, 2017, 49, 221-224.	1.7	7
65	Etiological agents of viral meningitis in children from a dengue-endemic area, Southeast region of Brazil. Journal of the Neurological Sciences, 2017, 375, 390-394.	0.6	18
66	Dendritic cells, macrophages, NK and CD8+ T lymphocytes play pivotal roles in controlling HSV-1 in the trigeminal ganglia by producing IL1-beta, iNOS and granzyme B. Virology Journal, 2017, 14, 37.	3.4	33
67	c-Jun integrates signals from both MEK/ERK and MKK/JNK pathways upon vaccinia virus infection. Archives of Virology, 2017, 162, 2971-2981.	2.1	12
68	Cross-sectional study involving healthcare professionals in a Vaccinia virus endemic area. Vaccine, 2017, 35, 3281-3285.	3.8	4
69	Absence of vaccinia virus detection in a remote region of the Northern Amazon forests, 2005-2015. Archives of Virology, 2017, 162, 2369-2373.	2.1	3
70	Daily ingestion of the probiotic Lactobacillus paracasei ST11 decreases Vaccinia virus dissemination and lethality in a mouse model. Beneficial Microbes, 2017, 8, 73-80.	2.4	4
71	Filling Knowledge Gaps for Mimivirus Entry, Uncoating, and Morphogenesis. Journal of Virology, 2017, 91, .	3.4	42
72	Dairy production practices and associated risks for bovine vaccinia exposure in cattle, Brazil. New Microbes and New Infections, 2017, 20, 43-50.	1.6	8

#	Article	IF	CITATIONS
73	The Investigation of Promoter Sequences of Marseilleviruses Highlights a Remarkable Abundance of the AAATATTT Motif in Intergenic Regions. Journal of Virology, 2017, 91, .	3.4	37
74	Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice. Journal of Nanobiotechnology, 2017, 15, 26.	9.1	45
75	Detection of mimivirus genome and neutralizing antibodies in humans from Brazil. Archives of Virology, 2017, 162, 3205-3207.	2.1	4
76	Molecular evidence of Orthopoxvirus DNA in capybara (Hydrochoerus hydrochaeris) stool samples. Archives of Virology, 2017, 162, 439-448.	2.1	18
77	Antidiarrheal activity of extracts from Maytenus gonoclada and inhibition of Dengue virus by lupeol. Anais Da Academia Brasileira De Ciencias, 2017, 89, 1555-1564.	0.8	12
78	Antiviral Activity of <i> Fridericia formosa </i> (Bureau) L. G. Lohmann (Bignoniaceae) Extracts and Constituents. Journal of Tropical Medicine, 2017, 2017, 1-11.	1.7	10
79	Promoter Motifs in NCLDVs: An Evolutionary Perspective. Viruses, 2017, 9, 16.	3.3	40
80	Meningitis Associated with Simultaneous Infection by Multiple Dengue Virus Serotypes in Children, Brazil. Emerging Infectious Diseases, 2017, 23, 115-118.	4.3	18
81	Vaccinia Virus Natural Infections in Brazil: The Good, the Bad, and the Ugly. Viruses, 2017, 9, 340.	3.3	36
82	Serologic and Molecular Evidence of Vaccinia Virus Circulation among Small Mammals from Different Biomes, Brazil. Emerging Infectious Diseases, 2017, 23, 931-938.	4.3	26
83	Detection of Vaccinia Virus in Urban Domestic Cats, Brazil. Emerging Infectious Diseases, 2017, 23, 360-362.	4.3	15
84	Microbiota is an essential element for mice to initiate a protective immunity against <i>Vaccinia virus</i> . FEMS Microbiology Ecology, 2016, 92, fiv147.	2.7	5
85	Infection of the central nervous system with dengue virus 3 genotype I causing neurological manifestations in Brazil. Revista Da Sociedade Brasileira De Medicina Tropical, 2016, 49, 125-129.	0.9	13
86	Detection of Vaccinia Virus in Dairy Cattle Serum Samples from 2009, Uruguay. Emerging Infectious Diseases, 2016, 22, 2174-2177.	4.3	12
87	Serro 2 Virus Highlights the Fundamental Genomic and Biological Features of a Natural Vaccinia Virus Infecting Humans. Viruses, 2016, 8, 328.	3.3	15
88	Seroprevalence of Orthopoxvirus in rural Brazil: insights into anti-OPV immunity status and its implications for emergent zoonotic OPV. Virology Journal, 2016, 13, 121.	3.4	18
89	Giants among larges: how gigantism impacts giant virus entry into amoebae. Current Opinion in Microbiology, 2016, 31, 88-93.	5.1	24
90	Platelet Activating Factor (PAF) Receptor Deletion or Antagonism Attenuates Severe HSV-1 Meningoencephalitis. Journal of Neurolmmune Pharmacology, 2016, 11, 613-621.	4.1	7

#	Article	IF	Citations
91	Dengue virus surveillance: Detection of DENV-4 in the city of São José do Rio Preto, SP, Brazil. Acta Tropica, 2016, 164, 84-89.	2.0	14
92	Occurrence of Pseudocowpox virus associated to Bovine viral diarrhea virus-1, Brazilian Amazon. Comparative Immunology, Microbiology and Infectious Diseases, 2016, 49, 70-75.	1.6	10
93	Suppressor of cytokine signaling 2 (SOCS2) contributes to encephalitis in a model of Herpes infection in mice. Brain Research Bulletin, 2016, 127, 164-170.	3.0	7
94	Vaccinia virus dissemination requires p21-activated kinase 1. Archives of Virology, 2016, 161, 2991-3002.	2.1	3
95	Natural <i>Vaccinia Virus</i> Infection: Diagnosis, Isolation, and Characterization. Current Protocols in Microbiology, 2016, 42, 14A.5.1-14A.5.43.	6.5	16
96	Neurotropic Dengue Virus Infections. , 2016, , 259-272.		1
97	The detection of Vaccinia virus confirms the high circulation of Orthopoxvirus in buffaloes living in geographical isolation, Maraj \tilde{A}^3 Island, Brazilian Amazon. Comparative Immunology, Microbiology and Infectious Diseases, 2016, 46, 16-19.	1.6	7
98	Mimiviruses: Replication, Purification, and Quantification. Current Protocols in Microbiology, 2016, 41, 14G.1.1-14G.1.13.	6.5	8
99	The Large Marseillevirus Explores Different Entry Pathways by Forming Giant Infectious Vesicles. Journal of Virology, 2016, 90, 5246-5255.	3.4	103
100	Fungi associated with rocks of the <scp>A</scp> tacama <scp>D</scp> esert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environmental Microbiology, 2016, 18, 232-245.	3.8	76
101	Spatial–Temporal Co-Circulation of Dengue Virus 1, 2, 3, and 4 Associated with Coinfection Cases in a Hyperendemic Area of Brazil: A 4-Week Survey. American Journal of Tropical Medicine and Hygiene, 2016, 94, 1080-1084.	1.4	28
102	Evidence of Apeu Virus Infection in Wild Monkeys, Brazilian Amazon. American Journal of Tropical Medicine and Hygiene, 2016, 94, 494-496.	1.4	5
103	Identification of Leptospira serovars by RFLP of the RNA polymerase beta subunit gene (rpoB). Brazilian Journal of Microbiology, 2015, 46, 465-476.	2.0	7
104	Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 517-527.	1.6	22
105	Outbreak of Severe Zoonotic Vaccinia Virus Infection, Southeastern Brazil. Emerging Infectious Diseases, 2015, 21, 695-698.	4.3	49
106	Modulation of the expression of mimivirus-encoded translation-related genes in response to nutrient availability during Acanthamoeba castellanii infection. Frontiers in Microbiology, 2015, 06, 539.	3.5	16
107	Niemeyer Virus: A New Mimivirus Group A Isolate Harboring a Set of Duplicated Aminoacyl-tRNA Synthetase Genes. Frontiers in Microbiology, 2015, 6, 1256.	3.5	23
108	Pan-Genome Analysis of Brazilian Lineage A Amoebal Mimiviruses. Viruses, 2015, 7, 3483-3499.	3.3	26

#	Article	IF	Citations
109	Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil. Emerging Infectious Diseases, 2015, 21, 2244-2246.	4.3	13
110	Evaluating anti-Orthopoxvirus antibodies in individuals from Brazilian rural areas prior to the bovine vaccinia era. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 804-808.	1.6	9
111	Acanthamoeba polyphaga Mimivirus Prevents Amoebal Encystment-Mediating Serine Proteinase Expression and Circumvents Cell Encystment. Journal of Virology, 2015, 89, 2962-2965.	3.4	16
112	Oysters as hot spots for mimivirus isolation. Archives of Virology, 2015, 160, 477-482.	2.1	38
113	Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Research, 2015, 43, 6191-6206.	14.5	104
114	From Lesions to Viral Clones: Biological and Molecular Diversity amongst Autochthonous Brazilian Vaccinia Virus. Viruses, 2015, 7, 1218-1237.	3.3	15
115	High positivity of mimivirus in inanimate surfaces of a hospital respiratory-isolation facility, Brazil. Journal of Clinical Virology, 2015, 66, 62-65.	3.1	13
116	Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles, 2015, 19, 585-596.	2.3	88
117	Mimivirus Fibrils Are Important for Viral Attachment to the Microbial World by a Diverse Glycoside Interaction Repertoire. Journal of Virology, 2015, 89, 11812-11819.	3.4	53
118	Horizontal study of vaccinia virus infections in an endemic area: epidemiologic, phylogenetic and economic aspects. Archives of Virology, 2015, 160, 2703-2708.	2.1	10
119	First fatal case of CNS infection caused by Enterovirus A in Brazil. New Microbes and New Infections, 2015, 7, 94-96.	1.6	1
120	Dengue outbreaks in Divinopolis, southâ€eastern Brazil and the geographic and climatic distribution of <i>Aedes albopictus</i> and <i>Aedes aegypti</i> in 2011â€"2012. Tropical Medicine and International Health, 2015, 20, 77-88.	2.3	13
121	RAP1 GTPase Overexpression is Associated with Cervical Intraepithelial Neoplasia. PLoS ONE, 2015, 10, e0123531.	2.5	2
122	Amoebas as mimivirus bunkers: increased resistance to UV light, heat and chemical biocides when viruses are carried by amoeba hosts. Archives of Virology, 2014, 159, 1039-43.	2.1	12
123	Mycobacteria mobility shift assay: a method for the rapid identification of Mycobacterium tuberculosis and nontuberculous mycobacteria. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 356-361.	1.6	4
124	Could hantavirus circulation superpose areas of highly endemic vaccinia virus outbreaks? A retrospective seroepidemiological study in State of Minas Gerais. Revista Da Sociedade Brasileira De Medicina Tropical, 2014, 47, 778-782.	0.9	1
125	Spread of Vaccinia Virus to Cattle Herds, Argentina, 2011. Emerging Infectious Diseases, 2014, 20, 1576-1578.	4.3	19
126	Evaluation of the Effectiveness of Mass Trapping With BG-Sentinel Traps for Dengue Vector Control: A Cluster Randomized Controlled Trial in Manaus, Brazil. Journal of Medical Entomology, 2014, 51, 408-420.	1.8	61

#	Article	IF	CITATIONS
127	Differential upregulation of human 2′5′ <i>OAS</i> genes on systemic sclerosis: Detection of increased basal levels of <i>OASL</i> and <i>OAS</i> 2 genes through a qPCR based assay. Autoimmunity, 2014, 47, 119-126.	2.6	11
128	Outbreak of herpangina in the Brazilian Amazon in 2009 caused by Enterovirus B. Archives of Virology, 2014, 159, 1155-1157.	2.1	9
129	Defense against HSV-1 in a murine model is mediated by iNOS and orchestrated by the activation of TLR2 and TLR9 in trigeminal ganglia. Journal of Neuroinflammation, 2014, 11, 20.	7.2	28
130	A resourceful giant: APMV is able to interfere with the human type I interferon system. Microbes and Infection, 2014, 16, 187-195.	1.9	23
131	MEK/ERK activation plays a decisive role in yellow fever virus replication: Implication as an antiviral therapeutic target. Antiviral Research, 2014, 111, 82-92.	4.1	42
132	Growing a giant: Evaluation of the virological parameters for mimivirus production. Journal of Virological Methods, 2014, 207, 6-11.	2.1	9
133	Acanthamoeba polyphaga mimivirus and other giant viruses: an open field to outstanding discoveries. Virology Journal, 2014, 11, 120.	3.4	51
134	Intrafamilial Transmission of Vaccinia virus during a Bovine Vaccinia Outbreak in Brazil: A New Insight in Viral Transmission Chain. American Journal of Tropical Medicine and Hygiene, 2014, 90, 1021-1023.	1.4	13
135	Samba virus: a novel mimivirus from a giant rain forest, the Brazilian Amazon. Virology Journal, 2014, 11, 95.	3.4	87
136	Evaluation of tetravalent and conserved synthetic peptides vaccines derived from Dengue virus Envelope domain I and II. Virus Research, 2014, 188, 122-127.	2.2	8
137	Acanthamoeba polyphaga mimivirus Stability in Environmental and Clinical Substrates: Implications for Virus Detection and Isolation. PLoS ONE, 2014, 9, e87811.	2.5	16
138	Dengue Virus 2 American-Asian Genotype Identified during the 2006/2007 Outbreak in Piau \tilde{A}_7 Brazil Reveals a Caribbean Route of Introduction and Dissemination of Dengue Virus in Brazil. PLoS ONE, 2014, 9, e104516.	2.5	20
139	Mimivirus Circulation among Wild and Domestic Mammals, Amazon Region, Brazil. Emerging Infectious Diseases, 2014, 20, 469-472.	4.3	24
140	Absence of CCR5 increases neutrophil recruitment in severe herpetic encephalitis. BMC Neuroscience, 2013, 14, 19.	1.9	17
141	Recombinant envelope protein-based enzyme immunoassay for IgG antibodies is comparable to neutralization tests for epidemiological studies of dengue infection. Journal of Virological Methods, 2013, 187, 114-120.	2.1	16
142	Nitric oxide synthase expression correlates with death in an experimental mouse model of dengue with CNS involvement. Virology Journal, 2013, 10, 267.	3.4	28
143	Detection of <i>Vaccinia Virus </i> in Blood and Faeces of Experimentally Infected Cows. Transboundary and Emerging Diseases, 2013, 60, 552-555.	3.0	9
144	Clinical, hematological and biochemical parameters of dairy cows experimentally infected with Vaccinia virus. Research in Veterinary Science, 2013, 95, 752-757.	1.9	11

#	Article	IF	Citations
145	Bovine vaccinia, a systemic infection: Evidence of fecal shedding, viremia and detection in lymphoid organs. Veterinary Microbiology, 2013, 162, 103-111.	1.9	26
146	Vaccinia Virus in Household Environment during Bovine Vaccinia Outbreak, Brazil. Emerging Infectious Diseases, 2013, 19, 2045-7.	4.3	10
147	Reemergence of Vaccinia Virus during Zoonotic Outbreak, ParÃ; State, Brazil. Emerging Infectious Diseases, 2013, 19, 2017-2020.	4.3	19
148	Group 1 Vaccinia virus Zoonotic Outbreak in Maranhão State, Brazil. American Journal of Tropical Medicine and Hygiene, 2013, 89, 1142-1145.	1.4	22
149	Chemistry and Antiviral Activity of Arrabidaea pulchra (Bignoniaceae). Molecules, 2013, 18, 9919-9932.	3.8	35
150	Study of Vaccinia and Cowpox viruses' replication in Rac1-N17 dominant-negative cells. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 554-562.	1.6	1
151	Multifocal Cutaneous Orf Virus Infection in Goats in the Amazon Region, Brazil. Vector-Borne and Zoonotic Diseases, 2012, 12, 336-340.	1.5	20
152	Looking back: a genetic retrospective study of Brazilian <i>Orf virus</i> isolates. Veterinary Record, 2012, 171, 476-476.	0.3	14
153	Filling One More Gap: Experimental Evidence of Horizontal Transmission of Vaccinia Virus Between Bovines and Rodents. Vector-Borne and Zoonotic Diseases, 2012, 12, 61-64.	1.5	15
154	Immune Modulation in Primary <i>Vaccinia virus</i> Zoonotic Human Infections. Clinical and Developmental Immunology, 2012, 2012, 1-11.	3.3	7
155	A Vaccinia Virus-Driven Interplay between the MKK4/7-JNK1/2 Pathway and Cytoskeleton Reorganization. Journal of Virology, 2012, 86, 172-184.	3.4	24
156	Dengue-3 encephalitis promotes anxiety-like behavior in mice. Behavioural Brain Research, 2012, 230, 237-242.	2.2	24
157	A tetravalent dengue nanoparticle stimulates antibody production in mice. Journal of Nanobiotechnology, 2012, 10, 13.	9.1	16
158	Virucidal activity of chemical biocides against mimivirus, a putative pneumonia agent. Journal of Clinical Virology, 2012, 55, 323-328.	3.1	19
159	Characterization of a New Vaccinia virus Isolate Reveals the C23L Gene as a Putative Genetic Marker for Autochthonous Group $1\mathrm{Brazilian}$ Vaccinia virus. PLoS ONE, 2012, 7, e50413.	2.5	8
160	Group 2 Vaccinia Virus, Brazil. Emerging Infectious Diseases, 2012, 18, 2035-2038.	4.3	14
161	SP600125 inhibits Orthopoxviruses replication in a JNK1/2 -independent manner: Implication as a potential antipoxviral. Antiviral Research, 2012, 93, 69-77.	4.1	15
162	Recombinant envelope protein (rgp90) ELISA for equine infectious anemia virus provides comparable results to the agar gel immunodiffusion. Journal of Virological Methods, 2012, 180, 62-67.	2.1	10

#	Article	IF	Citations
163	Zoonotic vaccinia virus outbreaks in Brazil. Future Virology, 2011, 6, 697-707.	1.8	12
164	Characterization of main cytokine sources from the innate and adaptive immune responses following primary 17DD yellow fever vaccination in adults. Vaccine, 2011, 29, 583-592.	3.8	55
165	Vaccinia Virus Zoonotic Infection, São Paulo State, Brazil. Emerging Infectious Diseases, 2011, 18, 189-191.	4.3	35
166	Cocirculation of two dengue virus serotypes in individual and pooled samples of Aedes aegypti and Aedes albopictus larvae. Revista Da Sociedade Brasileira De Medicina Tropical, 2011, 44, 103-105.	0.9	29
167	Serologic Evidence of Orthopoxvirus Infection in Buffaloes, Brazil. Emerging Infectious Diseases, 2011, 18, 698-700.	4.3	5
168	Role of IL-4 in an experimental model of encephalitis induced by intracranial inoculation of herpes simplex virus-1 (HSV-1). Arquivos De Neuro-Psiquiatria, 2011, 69, 237-241.	0.8	8
169	Antiviral activity of Distictella elongata (Vahl) Urb. (Bignoniaceae), a potentially useful source of anti-dengue drugs from the state of Minas Gerais, Brazil. Letters in Applied Microbiology, 2011, 53, 602-607.	2.2	39
170	Zoonotic Brazilian Vaccinia virus: From field to therapy. Antiviral Research, 2011, 92, 150-163.	4.1	71
171	Assessing the variability of Brazilian Vaccinia virus isolates from a horse exanthematic lesion: coinfection with distinct viruses. Archives of Virology, 2011, 156, 275-283.	2.1	46
172	A-type inclusion bodies: a factor influencing cowpox virus lesion pathogenesis. Archives of Virology, 2011, 156, 617-628.	2.1	7
173	The dengue virus nonstructural protein 1 (NS1) increases NF-κB transcriptional activity in HepG2 cells. Archives of Virology, 2011, 156, 1275-1279.	2.1	20
174	Identification of a phylogenetically distinct orthobunyavirus from group C. Archives of Virology, 2011, 156, 1173-1184.	2.1	15
175	The interplay between Araçatuba virus and host signaling pathways: role of PI3K/Akt in viral replication. Archives of Virology, 2011, 156, 1775-1785.	2.1	3
176	Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice. Journal of Neuroinflammation, 2011, 8, 23.	7.2	57
177	xmins:mmi="http://www.w3.org/1998/Math/MathMil"> <mmi:mrow><mmi:msup><mmi:mn mathvariant="bold">2</mmi:mn><mmi:mo mathvariant="bold">′</mmi:mo></mmi:msup><mmi:msup><mmi:mn mathvariant="bold">5</mmi:mn><mmi:mo< td=""><td>1.6</td><td>10</td></mmi:mo<></mmi:msup></mmi:mrow>	1.6	10
178	mathvariant="bold">aC ² OAS Genes Insights into Differe Susceptibility of Vaccinia Virus to Chemical Disinfectants. American Journal of Tropical Medicine and Hygiene, 2011, 85, 152-157.	1.4	17
179	Adverse Events Post Smallpox-Vaccination: Insights from Tail Scarification Infection in Mice with Vaccinia virus. PLoS ONE, 2011, 6, e18924.	2.5	16
180	Seroprevalence of orthopoxvirus in an Amazonian rural village, Acre, Brazil. Archives of Virology, 2010, 155, 1139-1144.	2.1	28

#	Article	IF	CITATIONS
181	Antimicrobial, antiviral and cytotoxic activity of extracts and constituents from Polygonum spectabile Mart Phytomedicine, 2010, 17, 926-929.	5.3	25
182	Rapid detection of <i>Orthopoxvirus</i> by semiâ€nested PCR directly from clinical specimens: A useful alternative for routine laboratories. Journal of Medical Virology, 2010, 82, 692-699.	5.0	28
183	Dengue virus 3 clinical isolates show different patterns of virulence in experimental mice infection. Microbes and Infection, 2010, 12, 546-554.	1.9	27
184	Antiviral activity of Bignoniaceae species occurring in the State of Minas Gerais (Brazil): part 1. Letters in Applied Microbiology, 2010, 51, 469-476.	2.2	21
185	Vaccinia virus regulates expression of p21WAF1/Cip1 in A431 cells. Memorias Do Instituto Oswaldo Cruz, 2010, 105, 269-277.	1.6	2
186	Vaccinia Virus Infection in Monkeys, Brazilian Amazon. Emerging Infectious Diseases, 2010, 16, 976-979.	4.3	49
187	Antiviral activities of plants occurring in the state of Minas Gerais, Brazil: Part 2. Screening Bignoniaceae species. Revista Brasileira De Farmacognosia, 2010, 20, 742-750.	1.4	22
188	Dengue Virus 3 Genotype I in <i>Aedes aegypti</i> Mosquitoes and Eggs, Brazil, 2005–2006. Emerging Infectious Diseases, 2010, 16, 989-992.	4.3	43
189	TNFR1 plays a critical role in the control of severe HSV-1 encephalitis. Neuroscience Letters, 2010, 479, 58-62.	2.1	22
190	Human Vaccinia virus and Pseudocowpox virus co-infection: Clinical description and phylogenetic characterization. Journal of Clinical Virology, 2010, 48, 69-72.	3.1	48
191	Toll-Like Receptor (TLR) 2 and TLR9 Expressed in Trigeminal Ganglia are Critical to Viral Control During Herpes Simplex Virus 1 Infection. American Journal of Pathology, 2010, 177, 2433-2445.	3.8	71
192	Vaccinia Virus Is Not Inactivated After Thermal Treatment and Cheese Production Using Experimentally Contaminated Milk. Foodborne Pathogens and Disease, 2010, 7, 1491-1496.	1.8	20
193	Activation of the PI3K/Akt Pathway Early during Vaccinia and Cowpox Virus Infections Is Required for both Host Survival and Viral Replication. Journal of Virology, 2009, 83, 6883-6899.	3.4	107
194	Zoonotic Vaccinia Virus: Clinical and Immunological Characteristics in a Naturally Infected Patient. Clinical Infectious Diseases, 2009, 48, e37-e40.	5.8	38
195	Long-lasting stability of Vaccinia virus strains in murine feces: implications for virus circulation and environmental maintenance. Archives of Virology, 2009, 154, 1551-1553.	2.1	26
196	The Chemokine CCL5 Is Essential for Leukocyte Recruitment in a Model of Severe <i>Herpes simplex</i> Encephalitis. Annals of the New York Academy of Sciences, 2009, 1153, 256-263.	3.8	46
197	Interferons: Signaling, antiviral and viral evasion. Immunology Letters, 2009, 122, 1-11.	2.5	169
198	Natural human infections with Vaccinia virus during bovine vaccinia outbreaks. Journal of Clinical Virology, 2009, 44, 308-313.	3.1	80

#	Article	IF	CITATIONS
199	One More Piece in the VACV Ecological Puzzle: Could Peridomestic Rodents Be the Link between Wildlife and Bovine Vaccinia Outbreaks in Brazil?. PLoS ONE, 2009, 4, e7428.	2.5	89
200	Nested-multiplex PCR detection of Orthopoxvirus and Parapoxvirus directly from exanthematic clinical samples. Virology Journal, 2009, 6, 140.	3.4	35
201	Detection and phylogenetic analysis of Orf virus from sheep in Brazil: a case report. Virology Journal, 2009, 6, 47.	3.4	39
202	Essential role of platelet-activating factor receptor in the pathogenesis of Dengue virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14138-14143.	7.1	119
203	Bovine Vaccinia Outbreaks: Detection and Isolation of Vaccinia Virus in Milk Samples. Foodborne Pathogens and Disease, 2009, 6, 1141-1146.	1.8	36
204	Antiviral Activity of Solanum paniculatum Extract and Constituents. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2009, 64, 813-818.	1.4	20
205	Interferons and sclerodermaâ€"A new clue to understanding the pathogenesis of scleroderma?. Immunology Letters, 2008, 118, 110-115.	2.5	24
206	Sequence and phylogenetic analysis of the large (L) segment of the Tahyna virus genome. Virus Genes, 2008, 36, 435-437.	1.6	5
207	Brazilian Vaccinia virus strains are genetically divergent and differ from the Lister vaccine strain. Microbes and Infection, 2008, 10, 185-197.	1.9	42
208	Climbing the steps of viral atomic force microscopy: visualization of <i>Dengue virus</i> particles. Journal of Microscopy, 2008, 231, 180-185.	1.8	14
209	Antiviral activity of type I interferons and interleukins 29 and 28a (type III interferons) against Apeu virus. Antiviral Research, 2008, 80, 302-308.	4.1	22
210	Real-time PCR assay to identify variants of Vaccinia virus: Implications for the diagnosis of bovine vaccinia in Brazil. Journal of Virological Methods, 2008, 152, 63-71.	2.1	31
211	Traffic of leukocytes in the central nervous system is associated with chemokine up-regulation in a severe model of herpes simplex encephalitis: An intravital microscopy study. Neuroscience Letters, 2008, 445, 18-22.	2.1	46
212	Innate immunity phenotypic features point toward simultaneous raise of activation and modulation events following 17DD live attenuated yellow fever first-time vaccination. Vaccine, 2008, 26, 1173-1184.	3.8	35
213	Vaccinia virus: shedding and horizontal transmission in a murine model. Journal of General Virology, 2008, 89, 2986-2991.	2.9	26
214	Dengue Virus 3 Genotype 1 Associated with Dengue Fever and Dengue Hemorrhagic Fever, Brazil. Emerging Infectious Diseases, 2008, 14, 314-316.	4.3	49
215	Virulence in Murine Model Shows the Existence of Two Distinct Populations of Brazilian Vaccinia virus Strains. PLoS ONE, 2008, 3, e3043.	2.5	37
216	Zoonotic Vaccinia Virus Infection in Brazil: Clinical Description and Implications for Health Professionals. Journal of Clinical Microbiology, 2007, 45, 1370-1372.	3.9	55

#	Article	IF	Citations
217	Brazilian Vaccinia Viruses and Their Origins. Emerging Infectious Diseases, 2007, 13, 965-972.	4.3	118
218	Epidemiologia da poxvirose bovina no Estado do EspÃrito Santo, Brasil. Brazilian Journal of Veterinary Research and Animal Science, 2007, 44, 275.	0.2	12
219	Activation/modulation of adaptive immunity emerges simultaneously after 17DD yellow fever first-time vaccination: is this the key to prevent severe adverse reactions following immunization?. Clinical and Experimental Immunology, 2007, 148, 90-100.	2.6	47
220	Use of atomic force microscopy as a diagnostic tool to identify orthopoxvirus. Journal of Virological Methods, 2007, 141, 198-204.	2.1	19
221	Brazilian Vaccinia virus strains show genetic polymorphism at the ati gene. Virus Genes, 2007, 35, 531-539.	1.6	16
222	Caraparu virus (group C Orthobunyavirus): sequencing and phylogenetic analysis based on the conserved region 3 of the RNA polymerase gene. Virus Genes, 2007, 35, 681-684.	1.6	6
223	Increased expression of 2′5′oligoadenylate synthetase and double-stranded RNA dependent protein kinase messenger RNAs on affected skin of systemic sclerosis patients. Archives of Dermatological Research, 2007, 299, 259-262.	1.9	9
224	Integrin alpha 11 is a novel type I interferon stimulated gene. Cytokine, 2006, 33, 352-361.	3.2	10
225	Differential role played by the MEK/ERK/EGR-1 pathway in orthopoxviruses vaccinia and cowpox biology. Biochemical Journal, 2006, 398, 83-95.	3.7	30
226	ISOLATION OF TWO VACCINIA VIRUS STRAINS FROM A SINGLE BOVINE VACCINIA OUTBREAK IN RURAL AREA FROM BRAZIL: IMPLICATIONS ON THE EMERGENCE OF ZOONOTIC ORTHOPOXVIRUSES. American Journal of Tropical Medicine and Hygiene, 2006, 75, 486-490.	1.4	90
227	Short report: Isolation of two vaccinia virus strains from a single bovine vaccinia outbreak in rural area from Brazil: Implications on the emergence of zoonotic orthopoxviruses. American Journal of Tropical Medicine and Hygiene, 2006, 75, 486-90.	1.4	47
228	Passatempo Virus, a Vaccinia Virus Strain, Brazil. Emerging Infectious Diseases, 2005, 11, 1935-1941.	4.3	102
229	Characterization of alpha-enolase as an interferon-alpha 2 alpha 1 regulated gene. Frontiers in Bioscience - Landmark, 2005, 10, 2534.	3.0	11
230	Plasminogen/plasmin regulates c-fos and egr-1 expression via the MEK/ERK pathway. Biochemical and Biophysical Research Communications, 2005, 329, 237-245.	2.1	33
231	Plasminogen/plasmin regulates \hat{l}_{\pm} -enolase expression through the MEK/ERK pathway. Biochemical and Biophysical Research Communications, 2005, 337, 1065-1071.	2.1	41
232	Lethal Encephalitis in Myeloid Differentiation Factor 88-Deficient Mice Infected with Herpes Simplex Virus 1. American Journal of Pathology, 2005, 166, 1419-1426.	3.8	85
233	A rapid polymerase chain reaction protocol to detect adenovirus in eye swabs. Arquivos Brasileiros De Oftalmologia, 2004, 67, 423-427.	0.5	2
234	Belo Horizonte virus: a vaccinia-like virus lacking the A-type inclusion body gene isolated from infected mice. Journal of General Virology, 2004, 85, 2015-2021.	2.9	36

#	Article	IF	Citations
235	The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication. Biochemical Journal, 2004, 381, 437-446.	3.7	124
236	Araçatuba Virus: A Vaccinialike Virus Associated with Infection in Humans and Cattle. Emerging Infectious Diseases, 2003, 9, 155-160.	4.3	137
237	The use and misuse of the "impact factor" as a parameter for evaluation of scientific publication quality: a proposal to rationalize its application. Brazilian Journal of Medical and Biological Research, 2003, 36, 1605-1612.	1.5	34
238	Frequency of p12K and p12R Alleles of HTLV Type 1 in HAM/TSP Patients and in Asymptomatic HTLV Type 1 Carriers. AIDS Research and Human Retroviruses, 2002, 18 , $899-902$.	1.1	15
239	Protease nexin-1 messenger RNA levels are not affected by serum or interferon beta in cultured systemic sclerosis fibroblasts. Archives of Dermatological Research, 2002, 293, 584-589.	1.9	1
240	Characterization of a vaccinia-like virus isolated in a Brazilian forest. Journal of General Virology, 2002, 83, 223-228.	2.9	61
241	Characterization of ATI, TK and IFN-alpha/betaR genes in the genome of the BeAn 58058 virus, a naturally attenuated wild Orthopoxvirus. Virus Genes, 2001, 23, 291-301.	1.6	25
242	A Mitogenic Signal Triggered at an Early Stage of Vaccinia Virus Infection. Journal of Biological Chemistry, 2001, 276, 38353-38360.	3.4	90
243	Detection of herpesvirus DNA by the polymerase chain reaction (PCR) in vitreous samples from patients with necrotising retinitis. Journal of Clinical Pathology, 2001, 54, 103-106.	2.0	29
244	Heteroduplex mobility assay for rapid, sensitive and specific detection of mycobacteria. Diagnostic Microbiology and Infectious Disease, 2000, 36, 225-235.	1.8	12
245	Comparison of virus isolation and various polymerase chain reaction methods in the diagnosis of mucocutaneous herpesvirus infection. Acta Virologica, 2000, 44, 61-5.	0.8	5
246	Genetic variability of HIV-1 isolates from Minas Gerais, Brazil. Revista De Microbiologia, 1999, 30, 141-143.	0.1	2
247	The genome of cowpox virus contains a gene related to those encoding the epidermal growth factor, transforming growth factor alpha and vaccinia growth factor. Virus Genes, 1999, 18, 151-160.	1.6	16
248	Recovering cDNA bands from differential display RT-PCR gels using a transparency film mask. Molecular Biotechnology, 1999, 11, 195-197.	2.4	0
249	The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase is inappropriate as internal control in comparative studies between skin tissue and cultured skin fibroblasts using Northern blot analysis. Archives of Dermatological Research, 1999, 291, 659-661.	1.9	36
250	Biological Activities of a Human Amniotic Membrane Interferon. Placenta, 1999, 20, 189-196.	1.5	16
251	PROTEIN DOMAINS INVOLVED IN NUCLEAR TRANSPORT OF FOS. Cell Biology International, 1999, 23, 81-88.	3.0	7
252	Culture of human amniotic cells: A system to study interferon production. Placenta, 1998, 19, 307-314.	1.5	7

#	Article	IF	CITATION
253	Morphological and molecular characterization of the poxvirus BeAn 58058. Archives of Virology, 1998, 143, 1171-1186.	2.1	75
254	HIV-1 Detection and Subtyping by PCR and Heteroduplex Mobility Assay in Blood Donors: Can These Tests Help to Elucidate Conflicting Serological Results?. Transfusion Science, 1998, 19, 39-43.	0.6	16
255	PCR-BASED DIAGNOSIS OF A CASE OF HERPETIC WHITLOW IN AN AIDS PATIENT. Revista Do Instituto De Medicina Tropical De Sao Paulo, 1998, 40, 317-319.	1.1	4
256	Diagnosis of Mucocutaneous Herpetic Infections by PCR without DNA Extraction. Memorias Do Instituto Oswaldo Cruz, 1998, 93, 213-214.	1.6	7
257	The low proliferation rates of human amniotic cells are neither associated to deregulated proto-oncogenes' expression nor to the effect of IFNα2. Placenta, 1997, 18, 163-168.	1.5	5
258	Distinct antigenic subtypes of human beta interferon can be distinguished by neutralization. Brazilian Journal of Medical and Biological Research, 1996, 29, 1317-20.	1.5	0
259	Partial characterization of human amniotic membrane interferon. Brazilian Journal of Medical and Biological Research, 1991, 24, 21-7.	1.5	0
260	Antigenic Characterization of Human Interferon Derived from Amniotic Membranes Induced by Virus. Journal of Interferon Research, 1989, 9, 573-581.	1.2	5
261	Bovine Vaccinia Outbreaks: Detection and Isolation of Vaccinia Virus in Milk Samples. Foodborne Pathogens and Disease, 0, , 110306131211089.	1.8	0