Ahyeon Koh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8483977/publications.pdf Version: 2024-02-01

Δηχεών Κοη

#	Article	IF	CITATIONS
1	Dietary Factors, Time of the Week, Physical Fitness and Saliva Cortisol: Their Modulatory Effect on Mental Distress and Mood. International Journal of Environmental Research and Public Health, 2022, 19, 7001.	2.6	2
2	Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications. Nature Communications, 2022, 13, .	12.8	16
3	Adhesive-Free, Stretchable, and Permeable Multiplex Wound Care Platform. ACS Sensors, 2022, 7, 1996-2005.	7.8	7
4	Sweat and saliva cortisol response to stress and nutrition factors. Scientific Reports, 2020, 10, 19050.	3.3	52
5	Biofluidâ€Permeable Electronics: Electronicâ€ECM: A Permeable Microporous Elastomer for an Advanced Bioâ€Integrated Continuous Sensing Platform (Adv. Mater. Technol. 7/2020). Advanced Materials Technologies, 2020, 5, 2070043.	5.8	1
6	A low-cost, composite collagen-PDMS material for extended fluid retention in the skin-interfaced microfluidic devices. Colloids and Interface Science Communications, 2020, 38, 100301.	4.1	11
7	Highly Conductive Collagen by Low-Temperature Atomic Layer Deposition of Platinum. ACS Applied Materials & Interfaces, 2020, 12, 44371-44380.	8.0	6
8	Stress Monitoring and Recent Advancements in Wearable Biosensors. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1037.	4.1	67
9	Biopower-on-Skin: Electricity generation from sweat-eating bacteria for self-powered E-Skins. Nano Energy, 2020, 75, 104994.	16.0	43
10	Comparison of Colorimetric Analyses to Determine Cortisol in Human Sweat. ACS Omega, 2020, 5, 8211-8218.	3.5	41
11	A Skin-Mountable Bacteria-Powered Battery System for Self-Powered Medical Devices. , 2020, , .		2
12	Electronicâ€ECM: A Permeable Microporous Elastomer for an Advanced Bioâ€Integrated Continuous Sensing Platform. Advanced Materials Technologies, 2020, 5, 2000242.	5.8	14
13	Skin-inspired, open mesh electrochemical sensors for lactate and oxygen monitoring. Biosensors and Bioelectronics, 2019, 132, 343-351.	10.1	58
14	Sweat cortisol response to stress, macronutrient consumption and birth control. , 2019, , .		1
15	Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nature Biomedical Engineering, 2018, 2, 165-172.	22.5	108
16	Superâ€Absorbent Polymer Valves and Colorimetric Chemistries for Timeâ€Sequenced Discrete Sampling and Chloride Analysis of Sweat via Skinâ€Mounted Soft Microfluidics. Small, 2018, 14, e1703334.	10.0	119
17	Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects. Frontiers in Bioengineering and Biotechnology, 2018, 6, 47.	4.1	132
18	Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs. Advanced Functional Materials, 2017, 27, 1605476.	14.9	64

Ануеол Кон

#	Article	IF	CITATIONS
19	Ultrathin Injectable Sensors: Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and Heat Capacity for Cardiac Ablation Monitoring (Adv. Healthcare Mater. 3/2016). Advanced Healthcare Materials, 2016, 5, 394-394.	7.6	0
20	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 2016, 8, 366ra165.	12.4	933
21	Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and Heat Capacity for Cardiac Ablation Monitoring. Advanced Healthcare Materials, 2016, 5, 373-381.	7.6	47
22	Simple and Ultrasensitive Chemically Amplified Electrochemical Detection of Ferrocenemethanol on 4-Nitrophenyl Grafted Glassy Carbon Electrode. Journal of Electrochemical Science and Technology, 2016, 7, 286-292.	2.2	3
23	Simple and Ultrasensitive Chemically Amplified Electrochemical Detection of Ferrocenemethanol on 4-Nitrophenyl Crafted Glassy Carbon Electrode. Journal of Electrochemical Science and Technology, 2016, 7, 286-292.	2.2	1
24	Covalent Immobilization of Diaphorase in Viologen Polymer Network for Highly Sensitive Detection of NAD+ and NADH. Journal of Electrochemical Science and Technology, 2014, 5, 19-22.	2.2	1
25	Covalent Immobilization of Diaphorase in Viologen Polymer Network for Highly Sensitive Detection of NAD ⁺ and NADH. Journal of Electrochemical Science and Technology, 2014, 5, 19-22.	2.2	2
26	Nitric Oxide-Releasing Silica Nanoparticle-Doped Polyurethane Electrospun Fibers. ACS Applied Materials & Interfaces, 2013, 5, 7956-7964.	8.0	43
27	Biocompatible Materials for Continuous Glucose Monitoring Devices. Chemical Reviews, 2013, 113, 2528-2549.	47.7	276
28	Fabrication of Nitric Oxide-Releasing Porous Polyurethane Membranes-Coated Needle-type Implantable Glucose Biosensors. Analytical Chemistry, 2013, 85, 10488-10494.	6.5	57
29	Local delivery of nitric oxide: Targeted delivery of therapeutics to bone and connective tissues. Advanced Drug Delivery Reviews, 2012, 64, 1177-1188.	13.7	110
30	The effect of nitric oxide surface flux on the foreign body response to subcutaneous implants. Biomaterials, 2012, 33, 6305-6312.	11.4	56
31	Fabrication of nitric oxide-releasing polyurethane glucose sensor membranes. Biosensors and Bioelectronics, 2011, 28, 17-24.	10.1	34
32	Glucose Sensor Membranes for Mitigating the Foreign Body Response. Journal of Diabetes Science and Technology, 2011, 5, 1052-1059.	2.2	36