
## Ewan M Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8483410/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Combined epidemiological and genomic analysis of nosocomial SARS-CoV-2 infection early in the pandemic and the role of unidentified cases in transmission. Clinical Microbiology and Infection, 2022, 28, 93-100. | 6.0  | 21        |
| 2  | Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 2022, 602, 135-141.                                                                                                         | 27.8 | 138       |
| 3  | Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission. Nature<br>Communications, 2022, 13, 751.                                                                               | 12.8 | 27        |
| 4  | Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission.<br>Nature Communications, 2022, 13, 1012.                                                                           | 12.8 | 10        |
| 5  | Tracking SARS-CoV-2 Mutations & Variants Through the COG-UK-Mutation Explorer. Virus Evolution, 2022, 8, veac023.                                                                                                 | 4.9  | 19        |
| 6  | The NaHCO <sub>3</sub> -Responsive Phenotype in Methicillin-Resistant Staphylococcus aureus<br>(MRSA) Is Influenced by <i>mecA</i> Genotype. Antimicrobial Agents and Chemotherapy, 2022, 66,<br>e0025222.        | 3.2  | 3         |
| 7  | Quantifying acquisition and transmission of Enterococcus faecium using genomic surveillance.<br>Nature Microbiology, 2021, 6, 103-111.                                                                            | 13.3 | 53        |
| 8  | SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 2021, 19, 409-424.                                                                                                           | 28.6 | 2,650     |
| 9  | Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell<br>Reports, 2021, 35, 109292.                                                                            | 6.4  | 375       |
| 10 | CLIMB-COVID: continuous integration supporting decentralised sequencing for SARS-CoV-2 genomic surveillance. Genome Biology, 2021, 22, 196.                                                                       | 8.8  | 53        |
| 11 | A Combined Phenotypic-Genotypic Predictive Algorithm for In Vitro Detection of Bicarbonate: β-Lactam<br>Sensitization among Methicillin-Resistant Staphylococcus aureus (MRSA). Antibiotics, 2021, 10, 1089.      | 3.7  | 7         |
| 12 | Nasal microbiome research in ANCA-associated vasculitis: Strengths, limitations, and future directions. Computational and Structural Biotechnology Journal, 2021, 19, 415-423.                                    | 4.1  | 3         |
| 13 | The impact of viral mutations on recognition by SARS-CoV-2 specific TÂcells. IScience, 2021, 24, 103353.                                                                                                          | 4.1  | 57        |
| 14 | Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science, 2021, 374, eabl9551.                                                                     | 12.6 | 111       |
| 15 | The Evolutionary Genomics of Host Specificity in Staphylococcus aureus. Trends in Microbiology, 2020, 28, 465-477.                                                                                                | 7.7  | 74        |
| 16 | Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant<br>Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe, The, 2020, 1, e328-e335.             | 7.3  | 75        |
| 17 | The composition and functional protein subsystems of the human nasal microbiome in granulomatosis with polyangiitis: a pilot study. Microbiome, 2019, 7, 137.                                                     | 11.1 | 22        |
| 18 | Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nature Microbiology, 2019, 4, 1680-1691.                               | 13.3 | 47        |

Ewan M Harrison

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Veterinary Microbiology, 2019, 230, 138-144.                                                                               | 1.9  | 38        |
| 20 | Truncation of GdpP mediates β-lactam resistance in clinical isolates of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2019, 74, 1182-1191.                                                                              | 3.0  | 40        |
| 21 | Nasal carriage of <i>Staphylococcus pseudintermedius</i> in patients with granulomatosis with polyangiitis. Rheumatology, 2019, 58, 548-550.                                                                                            | 1.9  | 8         |
| 22 | Prospective genomic surveillance of methicillin-resistant Staphylococcus aureus (MRSA) associated with bloodstream infection, England, 1 October 2012 to 30 September 2013. Eurosurveillance, 2019, 24, .                               | 7.0  | 19        |
| 23 | Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains. Journal of Biological Chemistry, 2018, 293, 4468-4477.                                                      | 3.4  | 34        |
| 24 | Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nature Ecology and Evolution, 2018, 2, 1468-1478.                                                                                                       | 7.8  | 156       |
| 25 | Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Scientific<br>Reports, 2017, 7, 40660.                                                                                                             | 3.3  | 47        |
| 26 | Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community. Science Translational Medicine, 2017, 9, .                                                                            | 12.4 | 103       |
| 27 | Investigation of a Cluster of Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Transmission in a Community Setting. Clinical Infectious Diseases, 2017, 65, 2069-2077.                                                      | 5.8  | 11        |
| 28 | Genomic surveillance reveals low prevalence of livestock-associated methicillin-resistant<br>Staphylococcus aureus in the East of England. Scientific Reports, 2017, 7, 7406.                                                           | 3.3  | 25        |
| 29 | Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genomics, 2017, 18, 684.                                | 2.8  | 43        |
| 30 | Local Persistence of Novel MRSA Lineage after Hospital Ward Outbreak, Cambridge, UK, 2011–2013.<br>Emerging Infectious Diseases, 2016, 22, 1658-1659.                                                                                   | 4.3  | 4         |
| 31 | A Look into the Melting Pot: The mecC-Harboring Region Is a Recombination Hot Spot in Staphylococcus stepanovicii. PLoS ONE, 2016, 11, e0147150.                                                                                        | 2.5  | 13        |
| 32 | Transmission of methicillin-resistant Staphylococcus aureus in long-term care facilities and their related healthcare networks. Genome Medicine, 2016, 8, 102.                                                                          | 8.2  | 30        |
| 33 | The effect of genetic structure on molecular dating and tests for temporal signal. Methods in Ecology and Evolution, 2016, 7, 80-89.                                                                                                    | 5.2  | 143       |
| 34 | Systematic Surveillance Detects Multiple Silent Introductions and Household Transmission of<br>Methicillin-Resistant <i>Staphylococcus aureus</i> USA300 in the East of England. Journal of<br>Infectious Diseases, 2016, 214, 447-453. | 4.0  | 45        |
| 35 | PBP2a substitutions linked to ceftaroline resistance in MRSA isolates from the UK: Table 1 Journal of Antimicrobial Chemotherapy, 2016, 71, 268-269.                                                                                    | 3.0  | 16        |
| 36 | Whole-genome sequencing reveals transmission of vancomycin-resistant Enterococcus faecium in a healthcare network. Genome Medicine, 2016, 8, 4.                                                                                         | 8.2  | 58        |

EWAN M HARRISON

| #  | Article                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Validation of self-administered nasal swabs and postage for the isolation of Staphylococcus aureus.<br>Journal of Medical Microbiology, 2016, 65, 1434-1437.                                                                                                                          | 1.8  | 3         |
| 38 | A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with<br>A Plasmid Carrying an Aminoglycoside-Resistant Gene. PLoS ONE, 2016, 11, e0148367.                                                                                            | 2.5  | 7         |
| 39 | Genomic Analysis of Companion Rabbit Staphylococcus aureus. PLoS ONE, 2016, 11, e0151458.                                                                                                                                                                                             | 2.5  | 12        |
| 40 | Genomic insights into the rapid emergence and evolution of MDR in <i>Staphylococcus pseudintermedius</i> . Journal of Antimicrobial Chemotherapy, 2015, 70, 997-1007.                                                                                                                 | 3.0  | 77        |
| 41 | Old Drugs To Treat Resistant Bugs: Methicillin-Resistant Staphylococcus aureus Isolates with <i>mecC</i> Are Susceptible to a Combination of Penicillin and Clavulanic Acid. Antimicrobial Agents and Chemotherapy, 2015, 59, 7396-7404.                                              | 3.2  | 32        |
| 42 | Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission. Nature Communications, 2015, 6, 6560.                                                                                                                             | 12.8 | 105       |
| 43 | Draft Genome Sequence of the Streptococcus pneumoniae Avery Strain A66. Genome Announcements, 2015, 3, .                                                                                                                                                                              | 0.8  | 10        |
| 44 | A Shared Population of Epidemic Methicillin-Resistant Staphylococcus aureus 15 Circulates in Humans and Companion Animals. MBio, 2014, 5, e00985-13.                                                                                                                                  | 4.1  | 95        |
| 45 | Detection of <scp> <i>mecC </i> </scp> † <scp>M </scp> ethicillinâ€resistant<br><scp> <i>S </i> </scp> <i> taphylococcus aureus </i> isolates in river water: a potential role for water in<br>the environmental dissemination. Environmental Microbiology Reports, 2014, 6, 705-708. | 2.4  | 35        |
| 46 | Conjugative transfer frequencies of mef (A)â€containing Tn 1207.3 to macrolideâ€susceptible S<br>treptococcus pyogenes belonging to different emm types. Letters in Applied Microbiology, 2014, 58,<br>299-302.                                                                       | 2.2  | 6         |
| 47 | The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends in Microbiology, 2014, 22, 42-47.                                                                                                                                                                           | 7.7  | 351       |
| 48 | Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that<br>are methicillin resistant on susceptibility testing, but lack the mec gene. Journal of Antimicrobial<br>Chemotherapy, 2014, 69, 594-597.                                       | 3.0  | 80        |
| 49 | Prevalence and properties of mecC methicillin-resistant Staphylococcus aureus (MRSA) in bovine bulk<br>tank milk in Great Britain. Journal of Antimicrobial Chemotherapy, 2014, 69, 598-602.                                                                                          | 3.0  | 66        |
| 50 | A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy,<br>2014, 69, 911-918.                                                                                                                                                              | 3.0  | 73        |
| 51 | Prevalence and characterization of human mecC methicillin-resistant Staphylococcus aureus isolates in England. Journal of Antimicrobial Chemotherapy, 2014, 69, 907-910.                                                                                                              | 3.0  | 62        |
| 52 | Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel <i>mecA</i> homologue <i>mecC</i> . EMBO Molecular Medicine, 2013, 5, 509-515.                                                                                                               | 6.9  | 192       |
| 53 | Use of Vitek 2 Antimicrobial Susceptibility Profile To Identify <i>mecC</i> in Methicillin-Resistant<br>Staphylococcus aureus. Journal of Clinical Microbiology, 2013, 51, 2732-2734.                                                                                                 | 3.9  | 53        |
| 54 | A Staphylococcus xylosus Isolate with a New <i>mecC</i> Allotype. Antimicrobial Agents and Chemotherapy, 2013, 57, 1524-1528.                                                                                                                                                         | 3.2  | 67        |

| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Incidence and Characterisation of Methicillin-Resistant Staphylococcus aureus (MRSA) from Nasal<br>Colonisation in Participants Attending a Cattle Veterinary Conference in the UK. PLoS ONE, 2013, 8,<br>e68463.                                                       | 2.5  | 28        |
| 56 | Deletion of TnAbaR23Results in both Expected and Unexpected Antibiogram Changes in a<br>Multidrug-Resistant Acinetobacter baumannii Strain. Antimicrobial Agents and Chemotherapy, 2012, 56,<br>1845-1853.                                                              | 3.2  | 37        |
| 57 | ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic<br>Acids Research, 2012, 40, D621-D626.                                                                                                                               | 14.5 | 206       |
| 58 | Acinetobacter Insertion Sequence IS <i>Aba11</i> Belongs to a Novel Family That Encodes Transposases with a Signature HHEK Motif. Applied and Environmental Microbiology, 2012, 78, 471-480.                                                                            | 3.1  | 7         |
| 59 | Characterization of a novel chaperone/usher fimbrial operon present on KpGI-5, a methionine tRNA gene-associated genomic island in Klebsiella pneumoniae. BMC Microbiology, 2012, 12, 59.                                                                               | 3.3  | 8         |
| 60 | TADB: a web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids<br>Research, 2011, 39, D606-D611.                                                                                                                                     | 14.5 | 271       |
| 61 | mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Research, 2010, 38, W194-W200.                                                                                               | 14.5 | 74        |
| 62 | Pathogenicity Islands PAPI-1 and PAPI-2 Contribute Individually and Synergistically to the Virulence of <i>Pseudomonas aeruginosa </i> Strain PA14. Infection and Immunity, 2010, 78, 1437-1446.                                                                        | 2.2  | 69        |
| 63 | MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands. Nucleic Acids Research, 2007, 35, W97-W104.                                                                                                                      | 14.5 | 74        |
| 64 | Comparison and Correlation of Neisseria meningitidis Serogroup B Immunologic Assay Results and<br>Human Antibody Responses following Three Doses of the Norwegian Meningococcal Outer Membrane<br>Vesicle Vaccine MenBvac. Infection and Immunity, 2006, 74, 4557-4565. | 2.2  | 47        |