Karl Kuchler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8483184/publications.pdf Version: 2024-02-01

KADI KUCHIED

#	Article	IF	CITATIONS
1	The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. International Journal of Molecular Sciences, 2022, 23, 2249.	4.1	17
2	Comparative Transcriptomics Reveal Possible Mechanisms of Amphotericin B Resistance in Candida auris. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	4
3	The incredible diversity of structures and functions of ABC transporters. FEBS Letters, 2021, 595, 671-674.	2.8	5
4	Quantification of zinc intoxication of Candida glabrata after phagocytosis by primary macrophages. STAR Protocols, 2021, 2, 100352.	1.2	1
5	Multidrug Resistance in Mammals and Fungi—From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. International Journal of Molecular Sciences, 2021, 22, 4806.	4.1	28
6	Transcriptome Signatures Predict Phenotypic Variations of Candida auris. Frontiers in Cellular and Infection Microbiology, 2021, 11, 662563.	3.9	12
7	The histone chaperone HIR maintains chromatin states to control nitrogen assimilation and fungal virulence. Cell Reports, 2021, 36, 109406.	6.4	10
8	The involvement of the <i>Candida glabrata</i> trehalase enzymes in stress resistance and gut colonization. Virulence, 2021, 12, 329-345.	4.4	9
9	Mutations in the nucleotideâ€binding domain of putative sterol importers Aus1 and Pdr11 selectively affect utilization of exogenous sterol species in yeast. Yeast, 2020, 37, 5-14.	1.7	8
10	ATAC-Seq Identifies Chromatin Landscapes Linked to the Regulation of Oxidative Stress in the Human Fungal Pathogen Candida albicans. Journal of Fungi (Basel, Switzerland), 2020, 6, 182.	3.5	13
11	Picky ABCG5/G8 and promiscuous ABCG2 ―a tale of fatty diets and drug toxicity. FEBS Letters, 2020, 594, 4035-4058.	2.8	15
12	Type I Interferons Ameliorate Zinc Intoxication of Candida glabrata by Macrophages and Promote Fungal Immune Evasion. IScience, 2020, 23, 101121.	4.1	14
13	Grand Challenges in Infectious Diseases: Are We Prepared for Worst-Case Scenarios?. Frontiers in Microbiology, 2020, 11, 613383.	3.5	11
14	The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida auris. MSphere, 2020, 5, .	2.9	24
15	The first intracellular loop is essential for the catalytic cycle of the human ABCG2 multidrug resistance transporter. FEBS Letters, 2020, 594, 4059-4075.	2.8	4
16	The YEATS Domain Histone Crotonylation Readers Control Virulence-Related Biology of a Major Human Pathogen. Cell Reports, 2020, 31, 107528.	6.4	19
17	Sugar Phosphorylation Controls Carbon Source Utilization and Virulence of Candida albicans. Frontiers in Microbiology, 2020, 11, 1274.	3.5	11
18	Type I Interferon Response Dysregulates Host Iron Homeostasis and Enhances Candida glabrata Infection. Cell Host and Microbe, 2020, 27, 454-466.e8.	11.0	41

#	Article	IF	CITATIONS
19	Analyzing the Quenchable Iron Pool in Murine Macrophages by Flow Cytometry. Bio-protocol, 2020, 10, e3552.	0.4	4
20	A Histone Acetyltransferase Inhibitor with Antifungal Activity against CTG clade Candida Species. Microorganisms, 2019, 7, 201.	3.6	5
21	The Fungal Histone Acetyl Transferase Gcn5 Controls Virulence of the Human Pathogen Candida albicans through Multiple Pathways. Scientific Reports, 2019, 9, 9445.	3.3	38
22	Pathogenetic Impact of Bacterial–Fungal Interactions. Microorganisms, 2019, 7, 459.	3.6	31
23	The ABCC2 multidrug transporter is a pump gated by a valve and an extracellular lid. Nature Communications, 2019, 10, 5433.	12.8	44
24	Klebsiella pneumoniae prevents spore germination and hyphal development of Aspergillus species. Scientific Reports, 2019, 9, 218.	3.3	42
25	Remodeling of the Candida glabrata cell wall in the gastrointestinal tract affects the gut microbiota and the immune response. Scientific Reports, 2018, 8, 3316.	3.3	47
26	Methionine is required for cAMPâ€₱KAâ€mediated morphogenesis and virulence of <i>Candida albicans</i> . Molecular Microbiology, 2018, 108, 258-275.	2.5	28
27	Dectin-1 is required for miR155 upregulation in murine macrophages in response to <i>Candida albicans</i> . Virulence, 2017, 8, 41-52.	4.4	16
28	The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion. Scientific Reports, 2017, 7, 13767.	3.3	62
29	The Candida albicans HIR histone chaperone regulates the yeast-to-hyphae transition by controlling the sensitivity to morphogenesis signals. Scientific Reports, 2017, 7, 8308.	3.3	18
30	Immunological Identification of Fungal Species. Methods in Molecular Biology, 2017, 1508, 339-359.	0.9	2
31	Phenotypic Profiling of Candida glabrata in Liquid Media. Bio-protocol, 2017, 7, .	0.4	0
32	Fungal KATs/KDACs: A New Highway to Better Antifungal Drugs?. PLoS Pathogens, 2016, 12, e1005938.	4.7	33
33	The Paralogous Histone Deacetylases Rpd3 and Rpd31 Play Opposing Roles in Regulating the White-Opaque Switch in the Fungal Pathogen Candida albicans. MBio, 2016, 7, .	4.1	16
34	Subtle Structural Differences Trigger Inhibitory Activity of Propafenone Analogues at the Two Polyspecific ABC Transporters: Pâ€Glycoprotein (Pâ€gp) and Breast Cancer Resistance Protein (BCRP). ChemMedChem, 2016, 11, 1380-1394.	3.2	14
35	Inhibition of CBLB protects from lethal Candida albicans sepsis. Nature Medicine, 2016, 22, 915-923.	30.7	111
36	Flagging Drugs That Inhibit the Bile Salt Export Pump. Molecular Pharmaceutics, 2016, 13, 163-171.	4.6	24

#	Article	IF	CITATIONS
37	Genetic Transformation of Candida glabrata by Electroporation. Bio-protocol, 2015, 5, .	0.4	10
38	Candida glabrata susceptibility to antifungals and phagocytosis is modulated by acetate. Frontiers in Microbiology, 2015, 6, 919.	3.5	45
39	The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways. PLoS Pathogens, 2015, 11, e1005218.	4.7	48
40	Of mice, flies – and men? Comparing fungal infection models for large-scale screening efforts. DMM Disease Models and Mechanisms, 2015, 8, 473-486.	2.4	52
41	Large-scale Phenotypic Profiling of Gene Deletion Mutants in Candida glabrata. Bio-protocol, 2015, 5, .	0.4	1
42	Genetic Transformation of Candida glabrata by Heat Shock. Bio-protocol, 2015, 5, .	0.4	1
43	Identification of Candida glabrata Genes Involved in pH Modulation and Modification of the Phagosomal Environment in Macrophages. PLoS ONE, 2014, 9, e96015.	2.5	54
44	The Non-receptor Tyrosine Kinase Tec Controls Assembly and Activity of the Noncanonical Caspase-8 Inflammasome. PLoS Pathogens, 2014, 10, e1004525.	4.7	40
45	Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant. PLoS Genetics, 2014, 10, e1004824.	3.5	67
46	Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes. PLoS Pathogens, 2014, 10, e1004211.	4.7	155
47	A Histone Deacetylase Complex Mediates Biofilm Dispersal and Drug Resistance in Candida albicans. MBio, 2014, 5, e01201-14.	4.1	70
48	Positions and Numbers of <i>FKS</i> Mutations in Candida albicans Selectively Influence <i>In Vitro</i> and <i>In Vivo</i> Susceptibilities to Echinocandin Treatment. Antimicrobial Agents and Chemotherapy, 2014, 58, 3626-3635.	3.2	59
49	Immune Evasion, Stress Resistance, and Efficient Nutrient Acquisition Are Crucial for Intracellular Survival of Candida glabrata within Macrophages. Eukaryotic Cell, 2014, 13, 170-183.	3.4	100
50	Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense. Nature Genetics, 2014, 46, 1028-1033.	21.4	49
51	DENR–MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth. Nature, 2014, 512, 208-212.	27.8	148
52	MAPK Hog1 closes the <i>S. cerevisiae</i> glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes and Development, 2013, 27, 2590-2601.	5.9	102
53	The Tyrosine Kinase Btk Regulates the Macrophage Response to Listeria monocytogenes Infection. PLoS ONE, 2013, 8, e60476.	2.5	18
54	Immunoblot Analysis of Histone H4 Acetylation and Histone H2A Phosphorylation in Candida albicans. Bio-protocol, 2013, 3, .	0.4	0

#	Article	IF	CITATIONS
55	A Histone Deacetylase Adjusts Transcription Kinetics at Coding Sequences during Candida albicans Morphogenesis. PLoS Genetics, 2012, 8, e1003118.	3.5	88
56	Type I Interferons Promote Fatal Immunopathology by Regulating Inflammatory Monocytes and Neutrophils during Candida Infections. PLoS Pathogens, 2012, 8, e1002811.	4.7	131
57	Global Gene Deletion Analysis Exploring Yeast Filamentous Growth. Science, 2012, 337, 1353-1356.	12.6	186
58	The histone acetyltransferase <scp>Hat</scp> 1 facilitates <scp>DNA</scp> damage repair and morphogenesis in <i><scp>C</scp>andida albicans</i> . Molecular Microbiology, 2012, 86, 1197-1214.	2.5	42
59	Systems biology of host–fungus interactions: turning complexity into simplicity. Current Opinion in Microbiology, 2012, 15, 440-446.	5.1	14
60	An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells. Frontiers in Microbiology, 2012, 3, 85.	3.5	123
61	Fungal pathogens—a sweet and sour treat for toll-like receptors. Frontiers in Cellular and Infection Microbiology, 2012, 2, 142.	3.9	88
62	Transcription Factor Efg1 Shows a Haploinsufficiency Phenotype in Modulating the Cell Wall Architecture and Immunogenicity of Candida albicans. Eukaryotic Cell, 2012, 11, 129-140.	3.4	20
63	Cdr2p contributes to fluconazole resistance in Candida dubliniensis clinical isolates. Canadian Journal of Microbiology, 2011, 57, 416-426.	1.7	4
64	The Facultative Intracellular Pathogen <i>Candida glabrata</i> Subverts Macrophage Cytokine Production and Phagolysosome Maturation. Journal of Immunology, 2011, 187, 3072-3086.	0.8	196
65	The role of ABC proteins Aus1p and Pdr11p in the uptake of external sterols in yeast: Dehydroergosterol fluorescence study. Biochemical and Biophysical Research Communications, 2011, 404, 233-238.	2.1	46
66	The ABC of ABCs: multidrug resistance and genetic diseases. FEBS Journal, 2011, 278, 3189-3189.	4.7	11
67	Pathogenesis and Antifungal Drug Resistance of the Human Fungal Pathogen Candida glabrata. Pharmaceuticals, 2011, 4, 169-186.	3.8	48
68	Conventional Dendritic Cells Mount a Type I IFN Response against <i>Candida</i> spp. Requiring Novel Phagosomal TLR7-Mediated IFN-β Signaling. Journal of Immunology, 2011, 186, 3104-3112.	0.8	104
69	Targeting chromatin in fungal pathogens as a novel therapeutic strategy: histone modification gets infectious. Epigenomics, 2011, 3, 129-132.	2.1	10
70	Candida albicans Hgt1p, a Multifunctional Evasion Molecule: Complement Inhibitor, CR3 Analogue, and Human Immunodeficiency Virus–Binding Molecule. Journal of Infectious Diseases, 2011, 204, 802-809.	4.0	41
71	Efg1 Controls Caspofungin-Induced Cell Aggregation of Candida albicans through the Adhesin Als1. Eukaryotic Cell, 2011, 10, 1694-1704.	3.4	35
72	Estradiol impairs the Th17 immune response against <i>Candida albicans</i> . Journal of Leukocyte Biology, 2011, 91, 159-165.	3.3	41

#	Article	IF	CITATIONS
73	Morphological and Molecular Genetic Analysis of Epigenetic Switching of the Human Fungal Pathogen Candida albicans. Methods in Molecular Biology, 2011, 734, 303-315.	0.9	5
74	ABC proteins in yeast and fungal pathogens. Essays in Biochemistry, 2011, 50, 101-119.	4.7	29
75	Weak Organic Acid Stress Triggers Hyperphosphorylation of the Yeast Zinc-Finger Transcription Factor War1 and Dampens Stress Adaptation. OMICS A Journal of Integrative Biology, 2010, 14, 575-586.	2.0	7
76	Multidrug efflux pumps: Substrate selection in ATPâ€binding cassette multidrug efflux pumps – first come, first served?. FEBS Journal, 2010, 277, 540-549.	4.7	106
77	The Set3/Hos2 Histone Deacetylase Complex Attenuates cAMP/PKA Signaling to Regulate Morphogenesis and Virulence of Candida albicans. PLoS Pathogens, 2010, 6, e1000889.	4.7	99
78	Functional Genomics of Drug-Induced Ion Homeostasis Identifies a Novel Regulatory Crosstalk of Iron and Zinc Regulons in Yeast. OMICS A Journal of Integrative Biology, 2010, 14, 651-663.	2.0	6
79	<i>Candida glabrata</i> Persistence in Mice Does Not Depend on Host Immunosuppression and Is Unaffected by Fungal Amino Acid Auxotrophy. Infection and Immunity, 2010, 78, 1066-1077.	2.2	87
80	Fungal attacks on mammalian hosts: pathogen elimination requires sensing and tasting. Current Opinion in Microbiology, 2010, 13, 401-408.	5.1	65
81	ABC Transporter Pdr10 Regulates the Membrane Microenvironment of Pdr12 in Saccharomyces cerevisiae. Journal of Membrane Biology, 2009, 229, 27-52.	2.1	41
82	<i>Candida albicans</i> cell surface superoxide dismutases degrade hostâ€derived reactive oxygen species to escape innate immune surveillance. Molecular Microbiology, 2009, 71, 240-252.	2.5	233
83	Transcriptional loops meet chromatin: a dualâ€layer network controls white–opaque switching in <i>Candida albicans</i> . Molecular Microbiology, 2009, 74, 1-15.	2.5	91
84	In Vitro Systems for Studying the Interaction of Fungal Pathogens with Primary Cells from the Mammalian Innate Immune System. Methods in Molecular Biology, 2009, 470, 125-139.	0.9	15
85	Candida albicans HGT1 is a multifunctional complement evasion molecule. Molecular Immunology, 2009, 46, 2835.	2.2	0
86	<i>Candida glabrata</i> environmental stress response involves <i>Saccharomyces cerevisiae</i> Msn2/4 orthologous transcription factors. Molecular Microbiology, 2008, 69, 603-620.	2.5	112
87	Loss of peroxisome function triggers necrosis. FEBS Letters, 2008, 582, 2882-2886.	2.8	52
88	Weak Organic Acids Trigger Conformational Changes of the Yeast Transcription Factor War1 in Vivo to Elicit Stress Adaptation. Journal of Biological Chemistry, 2008, 283, 25752-25764.	3.4	30
89	A mutation of the H-loop selectively affects rhodamine transport by the yeast multidrug ABC transporter Pdr5. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5069-5074.	7.1	128
90	Membrane-active Compounds Activate the Transcription Factors Pdr1 and Pdr3 Connecting Pleiotropic Drug Resistance and Membrane Lipid Homeostasis in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2007, 18, 4932-4944.	2.1	47

#	Article	lF	CITATIONS
91	The High-Osmolarity Glycerol Response Pathway in the Human Fungal Pathogen <i>Candida glabrata</i> Strain ATCC 2001 Lacks a Signaling Branch That Operates in Baker's Yeast. Eukaryotic Cell, 2007, 6, 1635-1645.	3.4	49
92	Vienna special issue: Molecular machines. FEBS Letters, 2007, 581, 2749-2749.	2.8	37
93	A genetic screen identifies mutations in the yeast WAR1 gene, linking transcription factor phosphorylation to weak-acid stress adaptation. FEBS Journal, 2007, 274, 3094-3107.	4.7	13
94	High Pdr12 levels in spoilage yeast (Saccharomyces cerevisiae) correlate directly with sorbic acid levels in the culture medium but are not sufficient to provide cells with acquired resistance to the food preservative. International Journal of Food Microbiology, 2007, 113, 173-179.	4.7	25
95	ABC Transporters in Yeast – Drug Resistance and Stress Response in a Nutshell. , 2007, , 289-314.		0
96	Yeast ABC transporters - A tale of sex, stress, drugs and aging. FEBS Letters, 2006, 580, 1131-1138.	2.8	184
97	Fungal ATP-Binding Cassette (ABC) Transporters in Drug Resistance & Detoxification. Current Drug Targets, 2006, 7, 471-481.	2.1	104
98	Editorial [Biology & Pathology of Human Fungal Pathogens (Guest Editor: Karl Kuchler)]. Current Drug Targets, 2006, 7, 463-463.	2.1	0
99	Upregulation of chicken p15INK4b at senescence and in the developing brain. Journal of Cell Science, 2006, 119, 2435-2443.	2.0	24
100	Yeast ATPâ€Binding Cassette Transporters: Cellular Cleaning Pumps. Methods in Enzymology, 2005, 400, 460-484.	1.0	70
101	Activin A and Follicle-Stimulating Hormone Control Tight Junctions in Avian Granulosa Cells by Regulating Occludin Expression1. Biology of Reproduction, 2004, 70, 1493-1499.	2.7	58
102	Global Phenotypic Analysis and Transcriptional Profiling Defines the Weak Acid Stress Response Regulon inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2004, 15, 706-720.	2.1	149
103	The Yeast Pdr15p ATP-binding Cassette (ABC) Protein Is a General Stress Response Factor Implicated in Cellular Detoxification. Journal of Biological Chemistry, 2004, 279, 11593-11599.	3.4	53
104	The sensitivities of yeast strains deficient in PDR ABC transporters, to quinoline-ring antimalarial drugs. Annals of Tropical Medicine and Parasitology, 2004, 98, 643-649.	1.6	6
105	Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast, 2004, 21, 927-946.	1.7	73
106	Expression regulation of the yeastPDR5ATP-binding cassette (ABC) transporter suggests a role in cellular detoxification during the exponential growth phase. FEBS Letters, 2004, 559, 111-117.	2.8	63
107	The nuclear actin-related protein Act3p/Arp4p of Saccharomyces cerevisiae is involved in transcription regulation of stress genes. Molecular Microbiology, 2003, 50, 1155-1171.	2.5	37
108	Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. FEBS Journal, 2003, 270, 3189-3195.	0.2	110

#	Article	IF	CITATIONS
109	The <i>Candida albicans</i> Cdr2p ATPâ€binding cassette (ABC) transporter confers resistance to caspofungin. Molecular Microbiology, 2003, 48, 225-235.	2.5	107
110	Moderately lipophilic carboxylate compounds are the selective inducers of theSaccharomyces cerevisiaePdr12p ATP-binding cassette transporter. Yeast, 2003, 20, 575-585.	1.7	63
111	Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. International Journal of Antimicrobial Agents, 2003, 22, 291-300.	2.5	89
112	A Sensitive and Inexpensive Yeast Bioassay for the Mycotoxin Zearalenone and Other Compounds with Estrogenic Activity. Applied and Environmental Microbiology, 2003, 69, 805-811.	3.1	39
113	The CRG1 gene required for resistance to the singlet oxygen-generating cercosporin toxin in Cercospora nicotianae encodes a putative fungal transcription factor. Biochemical and Biophysical Research Communications, 2003, 302, 302-310.	2.1	39
114	INVENTORY AND EVOLUTION OF FUNGAL ABC PROTEIN GENES. , 2003, , 279-293.		11
115	FUNGAL ABC PROTEINS IN CLINICAL DRUG RESISTANCE AND CELLULAR DETOXIFICATION. , 2003, , 295-316.		4
116	Detoxification of the Fusarium Mycotoxin Deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278, 47905-47914.	3.4	472
117	War1p, a Novel Transcription Factor Controlling Weak Acid Stress Response in Yeast. Molecular and Cellular Biology, 2003, 23, 1775-1785.	2.3	129
118	The Yeast Protein Kinase C Cell Integrity Pathway Mediates Tolerance to the Antifungal Drug Caspofungin through Activation of Slt2p Mitogen-Activated Protein Kinase Signaling. Eukaryotic Cell, 2003, 2, 1200-1210.	3.4	176
119	Activin and Follicle-Stimulating Hormone Signaling Are Required for Long-Term Culture of Functionally Differentiated Primary Granulosa Cells from the Chicken Ovary1. Biology of Reproduction, 2003, 68, 620-627.	2.7	22
120	Activin A Signaling Induces Smad2, but Not Smad3, Requiring Protein Kinase A Activity in Granulosa Cells from the Avian Ovary. Journal of Biological Chemistry, 2003, 278, 21197-21203.	3.4	23
121	The ATP-binding cassette (ABC) transporter Bpt1p mediates vacuolar sequestration of glutathione conjugates in yeast. FEBS Letters, 2002, 520, 63-67.	2.8	78
122	Loss of Cmk1 Ca2+-calmodulin-dependent protein kinase in yeast results in constitutive weak organic acid resistance, associated with a post-transcriptional activation of the Pdr12 ATP-binding cassette transporter. Molecular Microbiology, 2002, 37, 595-605.	2.5	30
123	The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Molecular Microbiology, 2002, 46, 1429-1440.	2.5	115
124	Fungal ABC proteins: pleiotropic drug resistance, stress response and cellular detoxification. Research in Microbiology, 2001, 152, 375-389.	2.1	122
125	The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO Journal, 2001, 20, 1875-1887.	7.8	206
126	The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Molecular Microbiology, 2000, 35, 1255-1263.	2.5	75

#	Article	IF	CITATIONS
127	Positive and Negative Control of Multidrug Resistance by the Sit4 Protein Phosphatase in Kluyveromyces lactis. Journal of Biological Chemistry, 2000, 275, 14865-14872.	3.4	13
128	Human dermo-1 has attributes similar to twist in early bone development. Bone, 2000, 27, 591-602.	2.9	70
129	Cmdr1, a Chicken P-Glycoprotein, Confers Multidrug Resistance and Interacts with Estradiol. Biological Chemistry, 1999, 380, 231-41.	2.5	23
130	An ABC of tackling ABCs Trends in Cell Biology, 1999, 9, 463-464.	7.9	0
131	Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 217-236.	2.6	246
132	The <i>Saccharomyces cerevisiae</i> Weak-Acid-Inducible ABC Transporter Pdr12 Transports Fluorescein and Preservative Anions from the Cytosol by an Energy-Dependent Mechanism. Journal of Bacteriology, 1999, 181, 4644-4652.	2.2	146
133	The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO Journal, 1998, 17, 4257-4265.	7.8	306
134	Construction and characterization of single-transcript tricistronic retroviral vectors using two internal ribosome entry sites. Somatic Cell and Molecular Genetics, 1998, 24, 53-69.	0.7	16
135	Genetic Separation of FK506 Susceptibility and Drug Transport in the Yeast Pdr5 ATP-binding Cassette Multidrug Resistance Transporter. Molecular Biology of the Cell, 1998, 9, 523-543.	2.1	146
136	Endoplasmic Reticulum Degradation of a Mutated ATP-binding Cassette Transporter Pdr5 Proceeds in a Concerted Action of Sec61 and the Proteasome. Journal of Biological Chemistry, 1998, 273, 32848-32856.	3.4	166
137	Plasma Membrane Translocation of Fluorescent-labeled Phosphatidylethanolamine Is Controlled by Transcription Regulators, PDR1 and PDR3. Journal of Cell Biology, 1997, 138, 255-270.	5.2	102
138	Diazaborine Resistance in the Yeast Saccharomyces cerevisiae Reveals a Link between YAP1 and the Pleiotropic Drug Resistance Genes PDR1 andPDR3. Journal of Biological Chemistry, 1997, 272, 27091-27098.	3.4	75
139	Identification of Mouse Histone Deacetylase 1 as a Growth Factor-Inducible Gene. Molecular and Cellular Biology, 1997, 17, 5033-5043.	2.3	123
140	Unusual Protein Secretion and Translocation Pathways in Yeast: Implication of ABC Transporters. Molecular Biology Intelligence Unit, 1997, , 49-85.	0.2	2
141	The yeast ATP binding cassette (ABC) protein genesPDR10andPDR15are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Letters, 1997, 418, 269-274.	2.8	88
142	Intracellular Location, Complex Formation, and Function of the Transporter Associated with Antigen Processing in Yeast. FEBS Journal, 1997, 245, 266-272.	0.2	35
143	The Molecular Basis for Pleiotropic Drug Resistance in the Yeast Saccharomyces Cerevisiae: Regulation of Expression, Intracellular Trafficking and Proteolytic Turnover of ATP Binding Cassette (ABC) Multidrug Resistance Transporters. , 1997, , 305-317.		2
144	The yeast multidrug transporter Pdr5 of the plasma membrane is ubiquitinated prior to endocytosis and degradation in the vacuole. FEBS Letters, 1996, 378, 177-181.	2.8	115

#	Article	IF	CITATIONS
145	The ATPâ€binding cassette multidrug transporter Snq2 of <i>Saccharomyces cerevisiae</i> : a novel target for the transcription factors Pdr1 and Pdr3. Molecular Microbiology, 1996, 20, 109-117.	2.5	113
146	The ATP Binding Cassette Transporters Pdr5 and Snq2 of Saccharomyces cerevisiae Can Mediate Transport of Steroids in Vivo. Journal of Biological Chemistry, 1996, 271, 25167-25172.	3.4	140
147	Endocytosis and Vacuolar Degradation of the Plasma Membrane-Localized Pdr5 ATP-Binding Cassette Multidrug Transporter in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1995, 15, 5879-5887.	2.3	130
148	ATP binding cassette transporters in yeast. Membrane Protein Transport, 1995, 2, 57-96.	0.2	13
149	Chicken Lecithin-Cholesterol Acyltransferase. Journal of Biological Chemistry, 1995, 270, 26139-26145.	3.4	24
150	Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrobial Agents and Chemotherapy, 1995, 39, 2378-2386.	3.2	808
151	Retinol in Avian Oogenesis: Molecular Properties of the Carrier Protein. DNA and Cell Biology, 1995, 14, 403-410.	1.9	25
152	Chapter 2 A Novel Mechanism for Transmembrane Translocation of Peptides: The Saccharomyces cerevisiae STE6 Transporter and Export of the Mating Pheromone a-Factor. Current Topics in Membranes, 1994, , 19-42.	0.9	4
153	Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance. Journal of Biological Chemistry, 1994, 269, 4180-6.	3.4	196
154	Unusual routes of protein secretion: the easy way out. Trends in Cell Biology, 1993, 3, 421-426.	7.9	79
155	The a-factor transporter (STE6 gene product) and cell polarity in the yeast Saccharomyces cerevisiae Journal of Cell Biology, 1993, 120, 1203-1215.	5.2	104
156	Secretion of Peptides and Proteins Lacking Hydrophobic Signal Sequences: The Role of Adenosine Triphosphate-Driven Membrane Translocators*. Endocrine Reviews, 1992, 13, 499-514.	20.1	71
157	Functional expression of human mdr1 in the yeast Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2302-2306.	7.1	97
158	A cDNA from brain ofXenopus laeviscoding for a new precursor of thyrotropin-releasing hormone. FEBS Letters, 1992, 296, 292-296.	2.8	27
159	Dedicated Transporters for Peptide Export and Intercompartmental Traffic in the Yeast Saccharomyces cerevisiae. Cold Spring Harbor Symposia on Quantitative Biology, 1992, 57, 579-592.	1.1	22
160	The hydrophilic and acidic N-terminus of the integral membrane enzyme phosphatidylserine synthase is required for efficient membrane insertion. Yeast, 1990, 6, 331-343.	1.7	21
161	Membrane translocation of proteins without hydrophobic signal peptides. Current Opinion in Cell Biology, 1990, 2, 617-624.	5.4	50
162	Two precursors of thyrotropin-releasing hormone from skin of Xenopus laevis. Each contains seven copies of the end product. Journal of Biological Chemistry, 1990, 265, 11731-3.	3.4	29

#	Article	IF	CITATIONS
163	The genes for the frog skin peptides GLa, xenopsin, levitide and caerulein contain a homologous export exon encoding a signal sequence and part of an amphiphilic peptide. FEBS Journal, 1989, 179, 281-285.	0.2	37
164	Analysis of the cDNA for phospholipase A2 from honeybee venom glands. The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. FEBS Journal, 1989, 184, 249-254.	0.2	144
165	Identification of mitochondrial and microsomal phosphatidylserine synthase in Saccharomyces cerevisiae as the gene product of the CHO1 structural gene. Journal of Bacteriology, 1988, 170, 3778-3781.	2.2	20
166	Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae. Journal of Bacteriology, 1986, 165, 901-910.	2.2	194
167	Functional overexpression and characterization of yeast ABC transporter Pdr5p. , 0, 2007, .		0