
Lu Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8481693/publications.pdf Version: 2024-02-01

1117011

#	Article	IF	CITATIONS
1	Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. Journal of Nutritional Biochemistry, 2010, 21, 1089-1098.	4.2	140
2	Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. Journal of Hepatology, 2010, 53, 339-347.	3.7	129
3	Intraislet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight, 2019, 4, .	5.0	102
4	Hydroxytyrosol protects retinal pigment epithelial cells from acroleinâ€induced oxidative stress and mitochondrial dysfunction. Journal of Neurochemistry, 2007, 103, 2690-2700.	3.9	76
5	Tollip, an Intracellular Trafficking Protein, Is a Novel Modulator of the Transforming Growth Factor-β Signaling Pathway. Journal of Biological Chemistry, 2012, 287, 39653-39663.	3.4	69
6	β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions. Nature Communications, 2017, 8, 14295.	12.8	63
7	PAQR3 Modulates Insulin Signaling by Shunting Phosphoinositide 3-Kinase p110α to the Golgi Apparatus. Diabetes, 2013, 62, 444-456.	0.6	52
8	Fasting-Induced Protein Phosphatase 1 Regulatory Subunit Contributes to Postprandial Blood Glucose Homeostasis via Regulation of Hepatic Glycogenesis. Diabetes, 2011, 60, 1435-1445.	0.6	51
9	PAQR3 Plays a Suppressive Role in the Tumorigenesis of Colorectal Cancers. Carcinogenesis, 2012, 33, 2228-2235.	2.8	51
10	Adipocyte Î ² -arrestin-2 is essential for maintaining whole body glucose and energy homeostasis. Nature Communications, 2019, 10, 2936.	12.8	43
11	GCN5L1 modulates cross-talk between mitochondria and cell signaling to regulate FoxO1 stability and gluconeogenesis. Nature Communications, 2017, 8, 523.	12.8	41
12	Hepatic β-arrestin 2 is essential for maintaining euglycemia. Journal of Clinical Investigation, 2017, 127, 2941-2945.	8.2	40
13	PAQR3 Has Modulatory Roles in Obesity, Energy Metabolism, and Leptin Signaling. Endocrinology, 2013, 154, 4525-4535.	2.8	38
14	Regulation of Glucose Homeostasis and Lipid Metabolism by PPP1R3G-mediated Hepatic Glycogenesis. Molecular Endocrinology, 2014, 28, 116-126.	3.7	38
15	Central IGF1 improves glucose tolerance and insulin sensitivity in mice. Nutrition and Diabetes, 2017, 7, 2.	3.2	36
16	Hepatic Gi signaling regulates whole-body glucose homeostasis. Journal of Clinical Investigation, 2018, 128, 746-759.	8.2	34
17	β Cell–intrinsic β-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion. Journal of Clinical Investigation, 2019, 129, 3732-3737.	8.2	32
18	A G Protein-biased Designer G Protein-coupled Receptor Useful for Studying the Physiological Relevance of Gq/11-dependent Signaling Pathways. Journal of Biological Chemistry, 2016, 291, 7809-7820.	3.4	29

Lu Zнu

#	Article	IF	CITATIONS
19	CK2 acts as a potent negative regulator of receptor-mediated insulin release in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6818-24.	7.1	27
20	Adipocyte Gi signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nature Communications, 2020, 11, 2995.	12.8	27
21	Hepatic Deletion of Smad7 in Mouse Leads to Spontaneous Liver Dysfunction and Aggravates Alcoholic Liver Injury. PLoS ONE, 2011, 6, e17415.	2.5	27
22	Use of DREADD Technology to Identify Novel Targets for Antidiabetic Drugs. Annual Review of Pharmacology and Toxicology, 2021, 61, 421-440.	9.4	26
23	Selective activation of Gs signaling in adipocytes causes striking metabolic improvements in mice. Molecular Metabolism, 2019, 27, 83-91.	6.5	25
24	Allosteric modulation of β-cell M ₃ muscarinic acetylcholine receptors greatly improves glucose homeostasis in lean and obese mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18684-18690.	7.1	22
25	Unraveling the biological functions of Smad7 with mouse models. Cell and Bioscience, 2011, 1, 44.	4.8	20
26	β-arrestin-1 suppresses myogenic reprogramming of brown fat to maintain euglycemia. Science Advances, 2020, 6, eaba1733.	10.3	15
27	β-Arrestins as Important Regulators of Glucose and Energy Homeostasis. Annual Review of Physiology, 2022, 84, 17-40.	13.1	14
28	Mitochondrial GCN5L1 regulates glutaminase acetylation and hepatocellular carcinoma. Clinical and Translational Medicine, 2022, 12, e852.	4.0	14
29	Mitochondrial General Control of Amino Acid Synthesis 5 Like 1 Regulates Glutaminolysis, Mammalian Target of Rapamycin Complex 1 Activity, and Murine Liver Regeneration. Hepatology, 2020, 71, 643-657.	7.3	13
30	Beta-cell M3 muscarinic acetylcholine receptors as potential targets for novel antidiabetic drugs. International Immunopharmacology, 2020, 81, 106267.	3.8	6
31	Exercise during pregnancy may have more benefits than we thought. EBioMedicine, 2022, 77, 103889.	6.1	3
32	Virus-Mediated Expression of DREADDs for In Vivo Metabolic Studies. Methods in Molecular Biology, 2015, 1335, 205-221.	0.9	2
33	Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2. Biochemical and Biophysical Research Communications, 2022, 621, 1-7.	2.1	2

 34 $$\hat{l}^2$-Arrestins as regulators of key metabolic processes. , 2022, , 69-85.$