Torsten F Schwede

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8481151/publications.pdf Version: 2024-02-01

	28736	31191
42,033	57	106
citations	h-index	g-index
123	123	57168
docs citations		citing authors
		U
	citations 123	42,033 57 citations h-index 123 123

#	Article	IF	CITATIONS
1	SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 2018, 46, W296-W303.	6.5	8,474
2	The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22, 195-201.	1.8	6,515
3	SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 2003, 31, 3381-3385.	6.5	4,722
4	SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014, 42, W252-W258.	6.5	4,247
5	Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011, 27, 343-350.	1.8	1,855
6	The SWISS-MODEL Repository and associated resources. Nucleic Acids Research, 2009, 37, D387-D392.	6.5	1,789
7	Automated comparative protein structure modeling with SWISSâ€MODEL and Swissâ€PdbViewer: A historical perspective. Electrophoresis, 2009, 30, S162-73.	1.3	1,574
8	The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Research, 2017, 45, D313-D319.	6.5	1,227
9	Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols, 2009, 4, 1-13.	5.5	1,092
10	QMEAN server for protein model quality estimation. Nucleic Acids Research, 2009, 37, W510-W514.	6.5	716
11	IDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics, 2013, 29, 2722-2728.	1.8	634
12	Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 2017, 7, 10480.	1.6	608
13	QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics, 2020, 36, 1765-1771.	1.8	537
14	The SWISS-MODEL Repository: new features and functionalities. Nucleic Acids Research, 2006, 34, D315-D318.	6.5	454
15	Critical assessment of methods of protein structure prediction (CASP)—Round XIII. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1011-1020.	1.5	380
16	Critical assessment of methods of protein structure prediction (CASP) — round x. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1-6.	1.5	366
17	Critical assessment of methods of protein structure prediction (CASP)—Round XII. Proteins: Structure, Function and Bioinformatics, 2018, 86, 7-15.	1.5	296
18	The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Research, 2004, 32, 230D-234.	6.5	294

#	Article	IF	CITATIONS
19	Critical assessment of methods of protein structure prediction (CASP)—Round <scp>XIV</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1607-1617.	1.5	281
20	Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes and Development, 2009, 23, 93-104.	2.7	272
21	The Protein Model Portal—a comprehensive resource for protein structure and model information. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat031.	1.4	254
22	Crystal Structure of Histidine Ammonia-Lyase Revealing a Novel Polypeptide Modification as the Catalytic Electrophileâ€,‡. Biochemistry, 1999, 38, 5355-5361.	1.2	221
23	2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallographica Section D: Structural Biology, 2017, 73, 710-728.	1.1	205
24	Critical assessment of methods of protein structure prediction: Progress and new directions in round XI. Proteins: Structure, Function and Bioinformatics, 2016, 84, 4-14.	1.5	198
25	ProMod3—A versatile homology modelling toolbox. PLoS Computational Biology, 2021, 17, e1008667.	1.5	161
26	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure, 2015, 23, 1156-1167.	1.6	159
27	Assessment of template based protein structure predictions in CASP9. Proteins: Structure, Function and Bioinformatics, 2011, 79, 37-58.	1.5	152
28	Assessment of CASP7 predictions for template-based modeling targets. Proteins: Structure, Function and Bioinformatics, 2007, 69, 38-56.	1.5	146
29	Modelling three-dimensional protein structures for applications in drug design. Drug Discovery Today, 2014, 19, 890-897.	3.2	134
30	QMEANclust: estimation of protein model quality by combining a composite scoring function with structural density information. BMC Structural Biology, 2009, 9, 35.	2.3	131
31	The Protein Model Portal. Journal of Structural and Functional Genomics, 2009, 10, 1-8.	1.2	130
32	Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). Bioinformatics, 2014, 30, i505-i511.	1.8	129
33	Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12. Proteins: Structure, Function and Bioinformatics, 2018, 86, 387-398.	1.5	127
34	Automated Protein Structure Modeling with SWISS-MODEL Workspace and the Protein Model Portal. Methods in Molecular Biology, 2011, 857, 107-136.	0.4	124
35	Assessment of the assessment: Evaluation of the model quality estimates in CASP10. Proteins: Structure, Function and Bioinformatics, 2014, 82, 112-126.	1.5	114
36	Protein structure computing in the genomic era. Research in Microbiology, 2000, 151, 107-112.	1.0	111

#	Article	IF	CITATIONS
37	Protein Modeling: What Happened to the "Protein Structure Gap�. Structure, 2013, 21, 1531-1540.	1.6	111
38	Automated protein structure homology modeling: a progress report. Pharmacogenomics, 2004, 5, 405-416.	0.6	105
39	Automated server predictions in CASP7. Proteins: Structure, Function and Bioinformatics, 2007, 69, 68-82.	1.5	105
40	Assessment of disorder predictions in CASP7. Proteins: Structure, Function and Bioinformatics, 2007, 69, 129-136.	1.5	102
41	The protein structure initiative structural genomics knowledgebase. Nucleic Acids Research, 2009, 37, D365-D368.	6.5	94
42	GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell Genomics, 2021, 1, 100029.	3.0	94
43	<i>OpenStructure</i> : an integrated software framework for computational structural biology. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 701-709.	2.5	93
44	PDB-Dev: a Prototype System for Depositing Integrative/Hybrid Structural Models. Structure, 2017, 25, 1317-1318.	1.6	84
45	The Mouse Eugenol Odorant Receptor: Structural and Functional Plasticity of a Broadly Tuned Odorant Binding Pocket. Biochemistry, 2011, 50, 843-853.	1.2	81
46	Estimation of model accuracy in CASP13. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1361-1377.	1.5	78
47	Report of the wwPDB Small-Angle Scattering Task Force: Data Requirements for Biomolecular Modeling and the PDB. Structure, 2013, 21, 875-881.	1.6	77
48	Novel missense mutations of TMPRSS3 in two consanguineous Tunisian families with non-syndromic autosomal recessive deafness. Human Mutation, 2001, 18, 101-108.	1.1	76
49	Novel Inhibitors of Dengue Virus Methyltransferase: Discovery by in Vitro-Driven Virtual Screening on a Desktop Computer Grid. Journal of Medicinal Chemistry, 2010, 53, 1483-1495.	2.9	76
50	The Plug Domain of Yeast Sec61p Is Important for Efficient Protein Translocation, but Is Not Essential for Cell Viability. Molecular Biology of the Cell, 2006, 17, 4063-4068.	0.9	74
51	Assessment of ligandâ€binding residue predictions in CASP9. Proteins: Structure, Function and Bioinformatics, 2011, 79, 126-136.	1.5	72
52	Mutations in the Sec61p Channel Affecting Signal Sequence Recognition and Membrane Protein Topology. Journal of Biological Chemistry, 2007, 282, 33201-33209.	1.6	66
53	Mutations in the TMPRSS3 gene are a rare cause of childhood nonsyndromic deafness in Caucasian patients. Journal of Molecular Medicine, 2002, 80, 124-131.	1.7	65
54	The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods. Journal of Structural and Functional Genomics, 2011, 12, 45-54.	1.2	65

#	Article	IF	CITATIONS
55	The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases. Nucleic Acids Research, 2016, 44, D27-D37.	6.5	64
56	Methods of model accuracy estimation can help selecting the best models from decoy sets: Assessment of model accuracy estimations in <scp>CASP</scp> 11. Proteins: Structure, Function and Bioinformatics, 2016, 84, 349-369.	1.5	63
57	CASP9 target classification. Proteins: Structure, Function and Bioinformatics, 2011, 79, 21-36.	1.5	61
58	Assessment of model accuracy estimations in CASP12. Proteins: Structure, Function and Bioinformatics, 2018, 86, 345-360.	1.5	61
59	Evaluation of the templateâ€based modeling in <scp>CASP12</scp> . Proteins: Structure, Function and Bioinformatics, 2018, 86, 321-334.	1.5	61
60	Outcome of a Workshop on Archiving Structural Models of Biological Macromolecules. Structure, 2006, 14, 1211-1217.	1.6	60
61	Increased efficiency of <i>Campylobacter jejuni N</i> -oligosaccharyltransferase PglB by structure-guided engineering. Open Biology, 2015, 5, 140227.	1.5	59
62	Novel cargo-binding site in the \hat{l}^2 and \hat{l}' subunits of coatomer. Journal of Cell Biology, 2007, 179, 209-217.	2.3	57
63	Global and local model quality estimation at CASP8 using the scoring functions QMEAN and QMEANclust. Proteins: Structure, Function and Bioinformatics, 2009, 77, 173-180.	1.5	56
64	Assessment of protein assembly prediction in CASP12. Proteins: Structure, Function and Bioinformatics, 2018, 86, 247-256.	1.5	54
65	Challenging the state of the art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10. Proteins: Structure, Function and Bioinformatics, 2014, 82, 26-42.	1.5	53
66	Automated protein modelling - the proteome in 3D. Pharmacogenomics, 2000, 1, 257-266.	0.6	49
67	Sulfonylureas and Clinides Exhibit Peroxisome Proliferator-Activated Receptor γ Activity: A Combined Virtual Screening and Biological Assay Approach. Molecular Pharmacology, 2007, 71, 398-406.	1.0	49
68	Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: a proposed framework. Genome Medicine, 2017, 9, 113.	3.6	47
69	Asp1424Asn MYH9 mutation results in an unstable protein responsible for the phenotypes in May-Hegglin anomaly/Fechtner syndrome. Blood, 2003, 102, 529-534.	0.6	43
70	Continuous Automated Model EvaluatiOn (CAMEO)—Perspectives on the future of fully automated evaluation of structure prediction methods. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1977-1986.	1.5	40
71	Drug Design Workshop: A Web-Based Educational Tool To Introduce Computer-Aided Drug Design to the General Public. Journal of Chemical Education, 2017, 94, 335-344.	1.1	39
72	Assessment of ligand binding site predictions in CASP10. Proteins: Structure, Function and Bioinformatics, 2014, 82, 154-163.	1.5	37

#	Article	IF	CITATIONS
73	Covalent and three-dimensional structure of the cyclodextrinase from Flavobacterium sp. no. 92. FEBS Journal, 2003, 270, 2332-2341.	0.2	36
74	OpenStructure: a flexible software framework for computational structural biology. Bioinformatics, 2010, 26, 2626-2628.	1.8	34
75	A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2 Therapeutically Relevant Proteins by Combining Pocket and Docking Searches as Implemented in Pockets 2.0. International Journal of Molecular Sciences, 2020, 21, 5152.	1.8	34
76	Introducing "best single template―models as reference baseline for the Continuous Automated Model Evaluation (CAMEO). Proteins: Structure, Function and Bioinformatics, 2019, 87, 1378-1387.	1.5	31
77	Cohesive Properties of the <i>Caulobacter crescentus</i> Holdfast Adhesin Are Regulated by a Novel c-di-GMP Effector Protein. MBio, 2017, 8, .	1.8	29
78	How inaccuracies in protein structure models affect estimates of protein-ligand interactions: Computational analysis of HIV-I protease inhibitor binding. Proteins: Structure, Function and Bioinformatics, 2006, 65, 407-423.	1.5	28
79	Target highlights in <scp>CASP14</scp> : Analysis of models by structure providers. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1647-1672.	1.5	27
80	Homogenization and crystallization of histidine ammonia-lyase by exchange of a surface cysteine residue. Protein Engineering, Design and Selection, 1999, 12, 151-153.	1.0	26
81	Domain definition and target classification for CASP7. Proteins: Structure, Function and Bioinformatics, 2007, 69, 10-18.	1.5	21
82	Dual Activities of Odorants on Olfactory and Nuclear Hormone Receptors. Journal of Biological Chemistry, 2009, 284, 30547-30555.	1.6	21
83	Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE: implications of metal heterogeneity for evolution and antibioticdrug design. Metallomics, 2014, 6, 88-95.	1.0	21
84	Global Genomic Analysis of SARS-CoV-2 RNA Dependent RNA Polymerase Evolution and Antiviral Drug Resistance. Microorganisms, 2021, 9, 1094.	1.6	21
85	Target highlights in CASP9: Experimental target structures for the critical assessment of techniques for protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2011, 79, 6-20.	1.5	19
86	Computational Structural Biology. , 2008, , .		18
87	High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica. Nature Communications, 2020, 11, 5101.	5.8	17
88	Some of the most interesting <scp>CASP</scp> 11 targets through the eyes of their authors. Proteins: Structure, Function and Bioinformatics, 2016, 84, 34-50.	1.5	16
89	Plasmid-mediated colistin resistance in a patient infected with Klebsiella pneumoniae. Lancet Infectious Diseases, The, 2016, 16, 998-999.	4.6	15
90	Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support. Nucleic Acids Research, 2014, 42, W436-W441.	6.5	13

#	Article	IF	CITATIONS
91	Modeling of Protein Tertiary and Quaternary Structures Based on Evolutionary Information. Methods in Molecular Biology, 2019, 1851, 301-316.	0.4	13
92	Data to knowledge: how to get meaning from your result. IUCrJ, 2015, 2, 45-58.	1.0	12
93	Target highlights in CASP13: Experimental target structures through the eyes of their authors. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1037-1057.	1.5	12
94	Computational Analysis of Methyl Transfer Reactions in Dengue Virus Methyltransferase. Journal of Physical Chemistry B, 2014, 118, 5882-5890.	1.2	11
95	Target highlights from the first postâ€PSI CASP experiment (CASP12, May–August 2016). Proteins: Structure, Function and Bioinformatics, 2018, 86, 27-50.	1.5	11
96	Improving your target-template alignment with MODalign. Bioinformatics, 2012, 28, 1038-1039.	1.8	10
97	Exome sequencing of healthy phenotypic extremes links TROVE2 to emotional memory and PTSD. Nature Human Behaviour, 2017, 1, .	6.2	8
98	A computational protocol to evaluate the effects of protein mutants in the kinase gatekeeper position on the binding of ATP substrate analogues. BMC Research Notes, 2017, 10, 104.	0.6	7
99	Protein Tertiary Structure Modeling. Current Protocols in Protein Science, 2001, 23, Unit2.8.	2.8	3
100	ECCB 2012: The 11th European Conference on Computational Biology. Bioinformatics, 2012, 28, i303-i305.	1.8	3
101	Homology Modeling of Protein Structures. , 2013, , 992-998.		2
102	Anna Tramontano 1957–2017. Nature Structural and Molecular Biology, 2017, 24, 431-432.	3.6	2
103	Interactomes in the era of deep learning. Science, 2021, 374, 1319-1320.	6.0	2
104	SWISS-TANDEM: A Web-Based Workspace for MS/MS Protein Identification on PC Grids. Proceedings of the IEEE Symposium on Computer-Based Medical Systems, 2007, , .	0.0	1
105	A tribute to Anna Tramontano (1957–2017). Proteins: Structure, Function and Bioinformatics, 2018, 86, 5-6.	1.5	1
106	Novel missense mutations of TMPRSS3 in two consanguineous Tunisian families with non-syndromic autosomal recessive deafness. Human Mutation, 2002, 19, 183-183.	1.1	0
107	Dual activities of odorants on olfactory and nuclear hormone receptors Journal of Biological Chemistry, 2009, 284, 36720.	1.6	0
108	Protein Structure Modeling and Docking at the Swiss Institute of Bioinformatics. , 2009, , 219-246.		0

#	Article	IF	CITATIONS
109	How to use the PSI Structural Genomics Knowledgebase to Enable Research. Biophysical Journal, 2010, 98, 250a.	0.2	Ο
110	The Structural Biology Knowledgebase - search Online for Protein Sequences, Structures, Functions, Methods and More. Biophysical Journal, 2011, 100, 319a.	0.2	0
111	Cover Image, Volume 87, Issue 12. Proteins: Structure, Function and Bioinformatics, 2019, 87, C4.	1.5	Ο
112	Structural Biology Knowledgebase: a biologists resource for protein structure and sample information. FASEB Journal, 2012, 26, lb194.	0.2	0
113	Coordination of structural bioinformatics activities across Europe. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e231-e231.	0.0	0