
## Alexander S Medvedev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8480495/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.                                                                                                                                      | 3.7  | 249       |
| 2  | Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.                                                            | 2.5  | 216       |
| 3  | Internal wave coupling processes in Earth's atmosphere. Advances in Space Research, 2015, 55, 983-1003.                                                                                                                     | 2.6  | 192       |
| 4  | Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model.<br>Journal of Geophysical Research, 2000, 105, 26475-26491.                                                               | 3.3  | 162       |
| 5  | Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study. Journal of Geophysical Research, 2008, 113, .                                       | 3.3  | 157       |
| 6  | Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. Journal of Geophysical Research, 1995, 100, 25841.                                                                             | 3.3  | 119       |
| 7  | Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause. Journal of Geophysical Research, 2009, 114, .                                                                     | 3.3  | 119       |
| 8  | The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas<br>Orbiter. Space Science Reviews, 2018, 214, 1.                                                                                | 8.1  | 119       |
| 9  | No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.                                                                                                              | 27.8 | 111       |
| 10 | Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter.<br>Nature, 2019, 568, 521-525.                                                                                                  | 27.8 | 107       |
| 11 | Heating and cooling of the thermosphere by internal gravity waves. Geophysical Research Letters, 2009, 36, .                                                                                                                | 4.0  | 98        |
| 12 | Influence of gravity waves on the Martian atmosphere: General circulation modeling. Journal of<br>Geophysical Research, 2011, 116, .                                                                                        | 3.3  | 89        |
| 13 | Parameterization of gravity wave momentum deposition based on nonlinear wave interactions: basic<br>formulation and sensitivity tests. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62,<br>1015-1033.        | 1.6  | 85        |
| 14 | Internal gravity waves in the thermosphere during low and high solar activity: Simulation study.<br>Journal of Geophysical Research, 2010, 115, .                                                                           | 3.3  | 80        |
| 15 | Highâ€altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophysical Research Letters, 2015, 42, 8993-9000.                                                   | 4.0  | 79        |
| 16 | Thermal effects of internal gravity waves in the Martian upper atmosphere. Geophysical Research<br>Letters, 2012, 39, .                                                                                                     | 4.0  | 70        |
| 17 | Global distribution and parameter dependences of gravity wave activity in the Martian upper<br>thermosphere derived from MAVEN/NGIMS observations. Journal of Geophysical Research: Space<br>Physics, 2017, 122, 2374-2397. | 2.4  | 66        |
| 18 | Description and climatology of a new general circulation model of the Martian atmosphere. Journal of Geophysical Research, 2005, 110, .                                                                                     | 3.3  | 63        |

Alexander S Medvedev

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | First results of <i>Herschel</i> -PACS observations of Neptune. Astronomy and Astrophysics, 2010, 518, L152.                                                                                                             | 5.1 | 60        |
| 20 | Water and related chemistry in the solar system. A guaranteed time key programme for Herschel.<br>Planetary and Space Science, 2009, 57, 1596-1606.                                                                      | 1.7 | 58        |
| 21 | Thermal effects of saturating gravity waves in the atmosphere. Journal of Geophysical Research, 2003, 108, ACL 4-1.                                                                                                      | 3.3 | 57        |
| 22 | <i>Herschel</i> /HIFI observations of Mars: First detection of O <sub>2</sub> at submillimetre<br>wavelengths and upper limits on HCl and H <sub>2</sub> O <sub>2</sub> . Astronomy and Astrophysics,<br>2010, 521, L49. | 5.1 | 57        |
| 23 | Gravity waves in the thermosphere during a sudden stratospheric warming. Geophysical Research<br>Letters, 2012, 39, .                                                                                                    | 4.0 | 52        |
| 24 | Cooling of the Martian thermosphere by CO <sub>2</sub> radiation and gravity waves: An<br>intercomparison study with two general circulation models. Journal of Geophysical Research E:<br>Planets, 2015, 120, 913-927.  | 3.6 | 51        |
| 25 | Seasonal Water "Pump―in the Atmosphere of Mars: Vertical Transport to the Thermosphere.<br>Geophysical Research Letters, 2019, 46, 4161-4169.                                                                            | 4.0 | 50        |
| 26 | Dynamical effects of internal gravity waves in the equinoctial thermosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 90-91, 104-116.                                                                 | 1.6 | 49        |
| 27 | General circulation modeling of the Martian upper atmosphere during global dust storms. Journal of<br>Geophysical Research E: Planets, 2013, 118, 2234-2246.                                                             | 3.6 | 49        |
| 28 | Influence of parameterized smallâ€scale gravity waves on the migrating diurnal tide in Earth's thermosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 4846-4864.                                       | 2.4 | 49        |
| 29 | The nonlinear mechanism of gravity wave generation by meteorological motions in the atmosphere.<br>Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57, 1221-1231.                                            | 0.9 | 48        |
| 30 | Estimates of gravity wave drag on Mars: Indication of a possible lower thermospheric wind reversal.<br>Icarus, 2011, 211, 909-912.                                                                                       | 2.5 | 48        |
| 31 | On the role of an anisotropic gravity wave spectrum in maintaining the circulation of the middle atmosphere. Geophysical Research Letters, 1998, 25, 509-512.                                                            | 4.0 | 47        |
| 32 | Simulated variability of the highâ€latitude thermosphere induced by smallâ€scale gravity waves during a<br>sudden stratospheric warming. Journal of Geophysical Research: Space Physics, 2014, 119, 357-365.             | 2.4 | 44        |
| 33 | Winter polar warmings and the meridional transport on Mars simulated with a general circulation model. Icarus, 2007, 186, 97-110.                                                                                        | 2.5 | 42        |
| 34 | Gravity Waves in Planetary Atmospheres: Their Effects and Parameterization in Global Circulation<br>Models. Atmosphere, 2019, 10, 531.                                                                                   | 2.3 | 41        |
| 35 | Gravity waves and highâ€altitude CO <sub>2</sub> ice cloud formation in the Martian atmosphere.<br>Geophysical Research Letters, 2015, 42, 4294-4300.                                                                    | 4.0 | 39        |
| 36 | Seasonal changes of the baroclinic wave activity in the northern hemisphere of Mars simulated with a<br>GCM. Geophysical Research Letters, 2007, 34, .                                                                   | 4.0 | 37        |

ALEXANDER S MEDVEDEV

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Role of gravity waves in vertical coupling during sudden stratospheric warmings. Geoscience Letters, 2016, 3, .                                                                                        | 3.3 | 36        |
| 38 | A study of the distant activity of comet C/2006ÂW3Â(Christensen) with <i>Herschel</i> and ground-based radio telescopes. Astronomy and Astrophysics, 2010, 518, L149.                                  | 5.1 | 35        |
| 39 | Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars. Geophysical Research Letters, 2013, 40, 1484-1488.                                         | 4.0 | 35        |
| 40 | Comparison of the Martian thermospheric density and temperature from IUVS/MAVEN data and general circulation modeling. Geophysical Research Letters, 2016, 43, 3095-3104.                              | 4.0 | 34        |
| 41 | From cold to warm gas giants: A three-dimensional atmospheric general circulation modeling. Icarus, 2013, 225, 228-235.                                                                                | 2.5 | 33        |
| 42 | Dust Stormâ€Enhanced Gravity Wave Activity in the Martian Thermosphere Observed by MAVEN and<br>Implication for Atmospheric Escape. Geophysical Research Letters, 2021, 48, e2020GL092095.             | 4.0 | 33        |
| 43 | HIFI observations of water in the atmosphere of comet C/2008 Q3 (Garradd). Astronomy and Astrophysics, 2010, 518, L150.                                                                                | 5.1 | 31        |
| 44 | The EChO science case. Experimental Astronomy, 2015, 40, 329-391.                                                                                                                                      | 3.7 | 31        |
| 45 | Middle atmosphere polar warmings on Mars: Simulations and study on the validation with sub-millimeter observations. Planetary and Space Science, 2007, 55, 1103-1112.                                  | 1.7 | 30        |
| 46 | On Forcing the Winter Polar Warmings in the Martian Middle Atmosphere during Dust Storms.<br>Journal of the Meteorological Society of Japan, 2009, 87, 913-921.                                        | 1.8 | 28        |
| 47 | Gravity Wave Activity in the Atmosphere of Mars During the 2018 Global Dust Storm: Simulations With<br>a Highâ€Resolution Model. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006556. | 3.6 | 27        |
| 48 | On advection and diffusion in the mesosphere and lower thermosphere: The role of rotational fluxes.<br>Journal of Geophysical Research, 2004, 109, .                                                   | 3.3 | 26        |
| 49 | Water production in comet 81P/WildÂ2 as determined byHerschel/HIFI. Astronomy and Astrophysics, 2010, 521, L50.                                                                                        | 5.1 | 25        |
| 50 | A global view of gravity waves in the Martian atmosphere inferred from a highâ€resolution general circulation model. Geophysical Research Letters, 2015, 42, 9213-9222.                                | 4.0 | 24        |
| 51 | Influence of dust on the dynamics of the martian atmosphere above the first scale height. Aeolian Research, 2011, 3, 145-156.                                                                          | 2.7 | 23        |
| 52 | Semiannual oscillations in the atmosphere of Mars. Geophysical Research Letters, 2008, 35, .                                                                                                           | 4.0 | 22        |
| 53 | Influence of gravity waves on the climatology of high-altitude Martian carbon dioxide ice clouds.<br>Annales Geophysicae, 2018, 36, 1631-1646.                                                         | 1.6 | 22        |
| 54 | Gravity Wave Activity in the Martian Atmosphere at Altitudes 20–160Âkm From ACS/TGO Occultation<br>Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006899.                 | 3.6 | 22        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Annual Cycle of Gravity Wave Activity Derived From a Highâ€Resolution Martian General Circulation<br>Model. Journal of Geophysical Research E: Planets, 2019, 124, 1618-1632.                                                            | 3.6 | 21        |
| 56 | Realistic semiannual oscillation simulated in a middle atmosphere general circulation model.<br>Geophysical Research Letters, 2001, 28, 733-736.                                                                                         | 4.0 | 20        |
| 57 | Global Distribution of Gravity Wave Sources and Fields in the Martian Atmosphere during Equinox<br>and Solstice Inferred from a High-Resolution General Circulation Model. Journals of the Atmospheric<br>Sciences, 2016, 73, 4895-4909. | 1.7 | 20        |
| 58 | Obscure waves in planetary atmospheres. Physics Today, 2019, 72, 40-46.                                                                                                                                                                  | 0.3 | 20        |
| 59 | First results on Martian carbon monoxide from <i>Herschel</i> /HIFI observations. Astronomy and Astrophysics, 2010, 521, L48.                                                                                                            | 5.1 | 19        |
| 60 | Density Fluctuations in the Lower Thermosphere of Mars Retrieved From the ExoMars Trace Gas<br>Orbiter (TGO) Aerobraking. Atmosphere, 2019, 10, 620.                                                                                     | 2.3 | 16        |
| 61 | Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles. Journal of Geophysical Research E: Planets, 2018, 123, 508-526.                                     | 3.6 | 14        |
| 62 | Effects of Latitude-Dependent Gravity Wave Source Variations on the Middle and Upper Atmosphere.<br>Frontiers in Astronomy and Space Sciences, 2021, 7, .                                                                                | 2.8 | 14        |
| 63 | Parameterization of radiative heating and cooling rates in the stratosphere of Jupiter. Icarus, 2014, 242, 149-157.                                                                                                                      | 2.5 | 13        |
| 64 | General circulation modeling of the Martian upper atmosphere during global dust storms. Journal of<br>Geophysical Research E: Planets, 2013, 118, n/a-n/a.                                                                               | 3.6 | 10        |
| 65 | Martian Dust Storms and Gravity Waves: Disentangling Water Transport to the Upper Atmosphere.<br>Journal of Geophysical Research E: Planets, 2022, 127, .                                                                                | 3.6 | 10        |
| 66 | Net radiative heating and diagnostics of the diabatic circulation in the 15–110 km height layer. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1571-1584.                                                              | 0.9 | 9         |
| 67 | The <i>Herschel</i> -SPIRE submillimetre spectrum of Mars. Astronomy and Astrophysics, 2010, 518, L151.                                                                                                                                  | 5.1 | 9         |
| 68 | Extending the Parameterization of Gravity Waves into the Thermosphere and Modeling Their Effects.<br>Springer Atmospheric Sciences, 2013, , 467-480.                                                                                     | 0.3 | 9         |
| 69 | Smallâ€scale temperature fluctuations associated with gravity waves cause additional radiative cooling of mesopause the region. Geophysical Research Letters, 2007, 34, .                                                                | 4.0 | 8         |
| 70 | Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and<br>Dissipation in the Thermosphereâ€lonosphere. Journal of Geophysical Research: Space Physics, 2017, 122,<br>12,464.                       | 2.4 | 8         |
| 71 | Variations of the Martian Thermospheric Gravity-wave Activity during the Recent Solar Minimum as<br>Observed by MAVEN. Astrophysical Journal, 2021, 920, 69.                                                                             | 4.5 | 8         |
| 72 | The water cycle in the general circulation model of the martian atmosphere. Solar System Research, 2016, 50, 90-101.                                                                                                                     | 0.7 | 7         |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Intense Zonal Wind in the Martian Mesosphere During the 2018 Planetâ€Encircling Dust Event Observed<br>by Groundâ€Based Infrared Heterodyne Spectroscopy. Geophysical Research Letters, 2021, 48,<br>e2021GL092413. | 4.0 | 4         |
| 74 | Evidence for Gravity Waves in the Thermosphere of Saturn and Implications for Global Circulation.<br>Geophysical Research Letters, 2022, 49, .                                                                      | 4.0 | 4         |
| 75 | Reply to "Comments on the Gravity Wave Theory of J. Weinstock Concerning Dissipation Induced by Nonlinear Effectsâ€, Journals of the Atmospheric Sciences, 2007, 64, 1027-1041.                                     | 1.7 | 3         |
| 76 | A NEW COUPLED 3D-MODEL OF THE DYNAMICS AND CHEMISTRY OF THE MARTIAN ATMOSPHERE. , 0, , 177-194                                                                                                                      |     | 2         |
| 77 | Simulation of Water Vapor Photodissociation during Dust Storm Season on Mars. Solar System Research, 2022, 56, 23-31.                                                                                               | 0.7 | 2         |
| 78 | THE DOPPLER-SONNEMANN EFFECT (DSE) ON THE PHOTOCHEMISTRY ON MARS. , 0, , 163-175.                                                                                                                                   |     | 1         |
| 79 | Definition of a generalized diabatic circulation based on a variational approach. Izvestiya -<br>Atmospheric and Oceanic Physics, 2007, 43, 436-441.                                                                | 0.9 | 0         |
| 80 | MARTIAN ATMOSPHERE DURING THE 2001 GLOBAL DUST STORM: OBSERVATIONS WITH SWAS AND SIMULATIONS WITH A GENERAL CIRCULATION MODEL. , 2006, , 145-154.                                                                   |     | 0         |
| 81 | Infra-red Radiative Cooling/Heating of the Mesosphere and Lower Thermosphere Due to the<br>Small-Scale Temperature Fluctuations Associated with Gravity Waves. Springer Atmospheric Sciences,<br>2013, , 429-442.   | 0.3 | 0         |
| 82 | Editorial: Coupling Processes in Terrestrial and Planetary Atmospheres. Frontiers in Astronomy and Space Sciences, 2022, 9, .                                                                                       | 2.8 | 0         |