
Olena K Vatamaniuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8480220/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in understanding of copper function and transport in plants. , 2022, , 205-226.		6
2	Iron Availability within the Leaf Vasculature Determines the Magnitude of Iron Deficiency Responses in Source and Sink Tissues in Arabidopsis /i>. Plant and Cell Physiology, 2022, 63, 829-841.	3.1	8
3	Plant movement and LAC of it: How copper facilitates explosive seed dispersal. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
4	YSL3-mediated copper distribution is required for fertility, seed size and protein accumulation in <i>Brachypodium</i> . Plant Physiology, 2021, 186, 655-676.	4.8	25
5	Genome-wide association study suggests an independent genetic basis of zinc and cadmium concentrations in fresh sweet corn kernels. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	7
6	Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. Biology, 2021, 10, 409.	2.8	11
7	Ferroportin 3 is a dualâ€ŧargeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. Plant Journal, 2021, 107, 215-236.	5.7	19
8	TpIRT1 from Polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis. Plant Science, 2021, 312, 111058.	3.6	18
9	ASCORBATE PEROXIDASE6 delays the onset of age-dependent leaf senescence. Plant Physiology, 2021, 185, 441-456.	4.8	15
10	Copper deficiency alters shoot architecture and reduces fertility of both gynoecium and androecium in <i>Arabidopsis thaliana</i> . Plant Direct, 2020, 4, e00288.	1.9	24
11	Excized leaf water status as a measure of drought resistance of Ukrainian spring wheat. Studia Biologica = ĐʿІОЛОĐʿʿІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica, 2019, 13, 41-54.	0.4	3
12	The Arabidopsis thaliana Knockout Mutant for Phytochelatin Synthase1 (cad1-3) Is Defective in Callose Deposition, Bacterial Pathogen Defense and Auxin Content, But Shows an Increased Stem Lignification. Frontiers in Plant Science, 2018, 9, 19.	3.6	35
13	N-Terminal Extension and C-Terminal Domains Are Required for ABCB6/HMT-1 Protein Interactions, Function in Cadmium Detoxification, and Localization to the Endosomal-Recycling System in Caenorhabditis elegans. Frontiers in Physiology, 2018, 9, 885.	2.8	9
14	Iron-Nicotianamine Transporters Are Required for Proper Long Distance Iron Signaling. Plant Physiology, 2017, 175, 1254-1268.	4.8	87
15	Arabidopsis Pollen Fertility Requires the Transcription Factors CITF1 and SPL7 That Regulate Copper Delivery to Anthers and Jasmonic Acid Synthesis. Plant Cell, 2017, 29, 3012-3029.	6.6	76
16	CsNIP2;1 is a Plasma Membrane Transporter from <i>Cucumis sativus</i> that Facilitates Urea Uptake When Expressed in <i>Saccharomyces cerevisiae</i> and <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2016, 57, 616-629.	3.1	15
17	Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. Frontiers in Plant Science, 2015, 6, 716.	3.6	53
18	Gene Functional Analysis Using Protoplast Transient Assays. Methods in Molecular Biology, 2015, 1284, 433-452.	0.9	27

Olena K Vatamaniuk

#	Article	IF	CITATIONS
19	OPT3 Is a Phloem-Specific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 2249-2264.	6.6	215
20	Brachypodium distachyon as a model system for studies of copper transport in cereal crops. Frontiers in Plant Science, 2014, 5, 236.	3.6	24
21	A Â-Glutamyl Cyclotransferase Protects Arabidopsis Plants from Heavy Metal Toxicity by Recycling Glutamate to Maintain Glutathione Homeostasis. Plant Cell, 2013, 25, 4580-4595.	6.6	121
22	The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana. Metallomics, 2013, 5, 1262.	2.4	78
23	COPT6 Is a Plasma Membrane Transporter That Functions in Copper Homeostasis in Arabidopsis and Is a Novel Target of SQUAMOSA Promoter-binding Protein-like 7. Journal of Biological Chemistry, 2012, 287, 33252-33267.	3.4	86
24	Direct Transfer of Synthetic Double-Stranded RNA into Protoplasts of Arabidopsis thaliana. Methods in Molecular Biology, 2011, 744, 109-127.	0.9	8
25	Detoxification of Multiple Heavy Metals by a Half-Molecule ABC Transporter, HMT-1, and Coelomocytes of Caenorhabditis elegans. PLoS ONE, 2010, 5, e9564.	2.5	63
26	Tonoplast-localized Abc2 Transporter Mediates Phytochelatin Accumulation in Vacuoles and Confers Cadmium Tolerance. Journal of Biological Chemistry, 2010, 285, 40416-40426.	3.4	87
27	The RGM protein DRAG-1 positively regulates a BMP-like signaling pathway in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2010, 137, 2375-2384.	2.5	39
28	The N-Terminal Extension Domain of the C. elegans Half-Molecule ABC Transporter, HMT-1, Is Required for Protein-Protein Interactions and Function. PLoS ONE, 2010, 5, e12938.	2.5	14
29	Drosophila ABC Transporter, DmHMT-1, Confers Tolerance to Cadmium. Journal of Biological Chemistry, 2009, 284, 354-362.	3.4	54
30	Establishing RNA Interference as a Reverse-Genetic Approach for Gene Functional Analysis in Protoplasts. Plant Physiology, 2009, 149, 642-652.	4.8	85
31	Isolation of Protoplasts from Tissues of 14-day-old Seedlings of Arabidopsis thaliana . Journal of Visualized Experiments, 2009, , .	0.3	38
32	Mutagenic Definition of a Papain-Like Catalytic Triad, Sufficiency of the N-Terminal Domain for Single-Site Core Catalytic Enzyme Acylation, and C-Terminal Domain for Augmentative Metal Activation of a Eukaryotic Phytochelatin Synthase. Plant Physiology, 2006, 141, 858-869.	4.8	65
33	CeHMT-1, a Putative Phytochelatin Transporter, Is Required for Cadmium Tolerance in Caenorhabditis elegans. Journal of Biological Chemistry, 2005, 280, 23684-23690.	3.4	82
34	Weeds, Worms, and More. Papain's Long-Lost Cousin, Phytochelatin Synthase. Plant Physiology, 2004, 136, 2463-2474.	4.8	119
35	Phytochelatin Synthase, a Dipeptidyltransferase That Undergoes Multisite Acylation with Î ³ -Glutamylcysteine during Catalysis. Journal of Biological Chemistry, 2004, 279, 22449-22460.	3.4	127
36	Worms take the â€~phyto' out of â€~phytochelatins'. Trends in Biotechnology, 2002, 20, 61-64.	9.3	48

#	Article	IF	CITATIONS
37	A New Pathway for Heavy Metal Detoxification in Animals. Journal of Biological Chemistry, 2001, 276, 20817-20820.	3.4	206
38	Mechanism of Heavy Metal Ion Activation of Phytochelatin (PC) Synthase. Journal of Biological Chemistry, 2000, 275, 31451-31459.	3.4	346