
Sarkis K Mazmanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8480111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature, 2022, 602, 647-653.	27.8	179
2	Safety and target engagement of an oral small-molecule sequestrant in adolescents with autism spectrum disorder: an open-label phase 1b/2a trial. Nature Medicine, 2022, 28, 528-534.	30.7	45
3	Impaired gut barrier affects microglia health. Nature Neuroscience, 2022, 25, 268-270.	14.8	6
4	Gut microbiome-mediated regulation of neuroinflammation. Current Opinion in Immunology, 2022, 76, 102177.	5.5	30
5	Microbiota–brain axis: Context and causality. Science, 2022, 376, 938-939.	12.6	49
6	Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder. Biological Psychiatry, 2021, 89, 451-462.	1.3	106
7	The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255.	28.6	864
8	Microbiota regulate social behaviour via stress response neurons in the brain. Nature, 2021, 595, 409-414.	27.8	142
9	Gut microbial molecules in behavioural and neurodegenerative conditions. Nature Reviews Neuroscience, 2020, 21, 717-731.	10.2	167
10	Spatially distinct physiology of Bacteroides fragilis within the proximal colon of gnotobiotic mice. Nature Microbiology, 2020, 5, 746-756.	13.3	57
11	Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 2020, 579, 123-129.	27.8	316
12	Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nature Neuroscience, 2020, 23, 327-336.	14.8	247
13	A gut bacterial amyloid promotes $\hat{l}\pm$ -synuclein aggregation and motor impairment in mice. ELife, 2020, 9, .	6.0	251
14	Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 2019, 177, 1600-1618.e17.	28.9	701
15	Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nature Communications, 2019, 10, 2153.	12.8	178
16	Microbiome–microglia connections via the gut–brain axis. Journal of Experimental Medicine, 2019, 216, 41-59.	8.5	275
17	Gut microbiota utilize immunoglobulin A for mucosal colonization. Science, 2018, 360, 795-800.	12.6	447
18	The Protective Role of <i>Bacteroides fragilis</i> in a Murine Model of Colitis-Associated Colorectal Cancer. MSphere, 2018, 3, .	2.9	91

2

#	Article	lF	CITATIONS
19	Emerging evidence linking the gut microbiome to neurologic disorders. Genome Medicine, 2018, 10, 98.	8.2	34
20	A gut microbial factor modulates locomotor behaviour in Drosophila. Nature, 2018, 563, 402-406.	27.8	199
21	The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity, 2017, 46, 910-926.	14.3	342
22	Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. Immunity, 2017, 46, 350-363.	14.3	326
23	Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10713-10718.	7.1	709
24	The Microbiome Activates CD4 T-cell–mediated Immunity toÂCompensate for Increased Intestinal Permeability. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 285-297.	4.5	51
25	Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nature Neuroscience, 2017, 20, 1172-1179.	14.8	927
26	The placental interleukin-6 signaling controls fetal brain development and behavior. Brain, Behavior, and Immunity, 2017, 62, 11-23.	4.1	186
27	Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis. ISME Journal, 2017, 11, 15-30.	9.8	68
28	Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 2016, 167, 1469-1480.e12.	28.9	2,399
29	Myeloid-Derived Suppressor Cells Are Controlled by Regulatory T Cells via TGF-Î ² during Murine Colitis. Cell Reports, 2016, 17, 3219-3232.	6.4	116
30	Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science, 2016, 352, 1116-1120.	12.6	498
31	Diverse Intestinal Bacteria Contain Putative Zwitterionic Capsular Polysaccharides with Anti-inflammatory Properties. Cell Host and Microbe, 2016, 20, 535-547.	11.0	108
32	Mapping a multiplexed zoo of mRNA expression. Development (Cambridge), 2016, 143, 3632-3637.	2.5	198
33	The Central Nervous System and the Gut Microbiome. Cell, 2016, 167, 915-932.	28.9	985
34	Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology, 2016, 14, 20-32.	28.6	1,772
35	Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host and Microbe, 2015, 17, 565-576.	11.0	815
36	Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell, 2015, 161, 264-276.	28.9	2,423

#	Article	IF	CITATIONS
37	Winning the Microbial Battle, but Not the War. Cell, 2015, 163, 271-272.	28.9	2
38	Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. ELife, 2015, 4, e09083.	6.0	134
39	Interplay between Intestinal Microbiota and Host Immune System. Journal of Bacteriology and Virology, 2014, 44, 1.	0.1	12
40	Identification of secreted bacterial proteins by noncanonical amino acid tagging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 433-438.	7.1	99
41	Gut Microbiota Promote Hematopoiesis to Control Bacterial Infection. Cell Host and Microbe, 2014, 15, 374-381.	11.0	501
42	Specialized Metabolites from the Microbiome in Health and Disease. Cell Metabolism, 2014, 20, 719-730.	16.2	454
43	Gut Microbes and the Brain: Paradigm Shift in Neuroscience. Journal of Neuroscience, 2014, 34, 15490-15496.	3.6	719
44	Finding the Missing Links among Metabolites, Microbes, and the Host. Immunity, 2014, 40, 824-832.	14.3	256
45	Commensal bacteria protect against food allergen sensitization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13145-13150.	7.1	632
46	Microbial Learning Lessons: SFB Educate the Immune System. Immunity, 2014, 40, 457-459.	14.3	20
47	Disruption of the gut microbiome as a risk factor for microbial infections. Current Opinion in Microbiology, 2013, 16, 221-227.	5.1	174
48	Bacterial colonization factors control specificity and stability of the gut microbiota. Nature, 2013, 501, 426-429.	27.8	530
49	Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders. Cell, 2013, 155, 1451-1463.	28.9	2,596
50	Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3229-3236.	7.1	2,181
51	Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nature Immunology, 2013, 14, 668-675.	14.5	481
52	A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. Journal of Allergy and Clinical Immunology, 2013, 131, 201-212.	2.9	381
53	Breathe easy: microbes protect from allergies. Nature Medicine, 2012, 18, 492-494.	30.7	4
54	Outer Membrane Vesicles of a Human Commensal Mediate Immune Regulation and Disease Protection. Cell Host and Microbe, 2012, 12, 509-520.	11.0	531

#	Article	IF	CITATIONS
55	Intestinal Microbes in Inflammatory Bowel Diseases. American Journal of Gastroenterology Supplements (Print), 2012, 1, 15-21.	0.7	165
56	Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12776-12781.	7.1	307
57	Intestinal Microbes Affect Phenotypes and Functions of Invariant Natural Killer T Cells in Mice. Gastroenterology, 2012, 143, 418-428.	1.3	197
58	Pathobionts of the gastrointestinal microbiota and inflammatory disease. Current Opinion in Immunology, 2011, 23, 473-480.	5.5	362
59	The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota. Science, 2011, 332, 974-977.	12.6	1,354
60	The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe, 2011, 17, 137-141.	2.1	119
61	Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4615-4622.	7.1	1,110
62	Inducible Foxp3 ⁺ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12204-12209.	7.1	1,899
63	Coordination of tolerogenic immune responses by the commensal microbiota. Journal of Autoimmunity, 2010, 34, J220-J225.	6.5	232
64	A Pathobiont of the Microbiota Balances Host Colonization and Intestinal Inflammation. Cell Host and Microbe, 2010, 7, 265-276.	11.0	266
65	Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System?. Science, 2010, 330, 1768-1773.	12.6	956
66	Host–Bacterial Symbiosis in Health and Disease. Advances in Immunology, 2010, 107, 243-274.	2.2	335
67	The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 2009, 9, 313-323.	22.7	3,946
68	Gut Immune Balance Is as Easy as S-F-B. Immunity, 2009, 31, 536-538.	14.3	10
69	Getting the Bugs out of the Immune System: Do Bacterial Microbiota "Fix―Intestinal T Cell Responses?. Cell Host and Microbe, 2009, 5, 8-12.	11.0	50
70	A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008, 453, 620-625.	27.8	2,094
71	Regulation of surface architecture by symbiotic bacteria mediates host colonization. Proceedings of the United States of America, 2008, 105, 3951-3956.	7.1	101
72	Capsular Polysaccharides of Symbiotic Bacteria Modulate Immune Responses During Experimental Colitis. Journal of Pediatric Gastroenterology and Nutrition, 2008, 46, E11-2.	1.8	42

5

#	Article	IF	CITATIONS
73	Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System. Cell, 2007, 131, 33-45.	28.9	837
74	The love–hate relationship between bacterial polysaccharides and the host immune system. Nature Reviews Immunology, 2006, 6, 849-858.	22.7	297
75	An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell, 2005, 122, 107-118.	28.9	2,427
76	The Structure of Sortase B, a Cysteine Transpeptidase that Tethers Surface Protein to the Staphylococcus aureus Cell Wall. Structure, 2004, 12, 105-112.	3.3	79
77	Structures of Sortase B from Staphylococcus aureus and Bacillus anthracis Reveal Catalytic Amino Acid Triad in the Active Site. Structure, 2004, 12, 1147-1156.	3.3	79
78	The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes and Infection, 2003, 5, 775-780.	1.9	104
79	Passage of Heme-Iron Across the Envelope of <i>Staphylococcus aureus</i> . Science, 2003, 299, 906-909.	12.6	544
80	An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2293-2298.	7.1	338
81	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 16241-16248.	3.4	193
82	On the Role ofStaphylococcus aureusSortase and Sortase atalyzed Surface Protein Anchoring in Murine Septic Arthritis. Journal of Infectious Diseases, 2002, 185, 1417-1424.	4.0	94
83	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 7447-7452.	3.4	143
84	Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Molecular Microbiology, 2002, 43, 869-881.	2.5	214
85	An embarrassment of sortases – a richness of substrates? Response. Trends in Microbiology, 2001, 9, 101-102.	7.7	9
86	Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Molecular Microbiology, 2001, 40, 1049-1057.	2.5	343
87	A Program of Yersinia enterocolitica Type III Secretion Reactions Is Activated by Specific Signals. Journal of Bacteriology, 2001, 183, 4970-4978.	2.2	81
88	Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5510-5515.	7.1	413
89	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2000, 275, 9876-9881.	3.4	254
90	Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12424-12429.	7.1	521

#	Article	IF	CITATIONS
91	Staphylococcus aureus Sortase, an Enzyme that Anchors Surface Proteins to the Cell Wall. Science, 1999, 285, 760-763.	12.6	923