
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8479983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Slit2/Robo1 signaling inhibits smallâ€cell lung cancer by targeting βâ€catenin signaling in tumor cells and macrophages. Molecular Oncology, 2023, 17, 839-856.	4.6	3
2	Lipopolysaccharide from the commensal microbiota of the breast enhances cancer growth: role of S100A7 and TLR4. Molecular Oncology, 2022, 16, 1508-1522.	4.6	9
3	cPLA2 blockade attenuates S100A7-mediated breast tumorigenicity by inhibiting the immunosuppressive tumor microenvironment. Journal of Experimental and Clinical Cancer Research, 2022, 41, 54.	8.6	23
4	Cannabidiol Inhibits Tumorigenesis in Cisplatin-Resistant Non-Small Cell Lung Cancer via TRPV2. Cancers, 2022, 14, 1181.	3.7	25
5	Editorial: Inflammation and Myeloid Cells in Cancer Progression and Metastasis. Frontiers in Cell and Developmental Biology, 2022, 10, 913595.	3.7	0
6	Activity of Estrogen Receptor β Agonists in Therapy-Resistant Estrogen Receptor-Positive Breast Cancer. Frontiers in Oncology, 2022, 12, 857590.	2.8	9
7	Cancer Treatment: Preclinical & Clinical. Journal of the National Cancer Institute Monographs, 2021, 2021, 107-113.	2.1	7
8	Directional Migration of Breast Cancer Cells Hindered by Induced Electric Fields May Be Due to Accompanying Alteration of Metabolic Activity. Bioelectricity, 2021, 3, 92-100.	1.1	1
9	Racially Disparate Expression of mTOR/ERK-1/2 Allied Proteins in Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 601929.	3.7	4
10	Contribution of the tumor and obese microenvironment to triple negative breast cancer. Cancer Letters, 2021, 509, 115-120.	7.2	3
11	Slit2 Inhibits Breast Cancer Metastasis by Activating M1-Like Phagocytic and Antifibrotic Macrophages. Cancer Research, 2021, 81, 5255-5267.	0.9	33
12	Slit2-Mediated Metabolic Reprogramming in Bone Marrow-Derived Macrophages Enhances Antitumor Immunity. Frontiers in Immunology, 2021, 12, 753477.	4.8	5
13	Estrogen Receptor Beta (ERβ): A Ligand Activated Tumor Suppressor. Frontiers in Oncology, 2020, 10, 587386.	2.8	57
14	Macrophage migration inhibitory factor inhibition as a novel therapeutic approach against triple-negative breast cancer. Cell Death and Disease, 2020, 11, 774.	6.3	39
15	Molecular and Cellular Factors Associated with Racial Disparity in Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 5936.	4.1	13
16	The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases. Frontiers in Immunology, 2020, 11, 598532.	4.8	25
17	Ibrutinib treatment inhibits breast cancer progression and metastasis by inducing conversion of myeloid-derived suppressor cells to dendritic cells. British Journal of Cancer, 2020, 122, 1005-1013.	6.4	52
18	Electromagnetic fields alter the motility of metastatic breast cancer cells. Communications Biology, 2019. 2. 303.	4.4	24

#	Article	IF	CITATIONS
19	Cannabinoid Signaling in Cancer. Advances in Experimental Medicine and Biology, 2019, 1162, 51-61.	1.6	16
20	Abrupt involution induces inflammation, estrogenic signaling, and hyperplasia linking lack of breastfeeding with increased risk of breast cancer. Breast Cancer Research, 2019, 21, 80.	5.0	32
21	Association of newly identified genetic variant rs2853677 of TERT with non-small cell lung cancer and leukemia in population of Jammu and Kashmir, India. BMC Cancer, 2019, 19, 493.	2.6	7
22	Genomic Analysis of an Obesity Paradox: A Microarray Study of the Aortas of Morbidly Obese Decedents With Mild and Severe Atherosclerosis. Critical Pathways in Cardiology, 2019, 18, 57-60.	0.5	4
23	Clustering, Spatial Distribution, and Phosphorylation of Discoidin Domain Receptors 1 and 2 in Response to Soluble Collagen I. Journal of Molecular Biology, 2019, 431, 368-390.	4.2	30
24	Macrophage migration inhibitory factor (MIF):A novel therapeutic target against aggressive breast cancer. FASEB Journal, 2019, 33, 674.3.	0.5	0
25	Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation. Oncogene, 2018, 37, 4428-4442.	5.9	95
26	TRPV2 is a novel biomarker and therapeutic target in triple negative breast cancer. Oncotarget, 2018, 9, 33459-33470.	1.8	58
27	NONâ€CONTACT ELECTRIC FIELDS POTENTLY HINDER EGF PROMOTED BREAST CANCER MOTILITY BY DOWNREGULATING EGFR PHOSPHORYLATION. FASEB Journal, 2018, 32, .	0.5	Ο
28	STAT1 gene deficient mice develop accelerated breast cancer growth and metastasis which is reduced by IL-17 blockade. Oncolmmunology, 2017, 6, e1361088.	4.6	30
29	Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis. Angiogenesis, 2017, 20, 97-107.	7.2	33
30	Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer. Oncotarget, 2017, 8, 29668-29678.	1.8	44
31	Cannabinoid receptor-2 agonist inhibits macrophage induced EMT in non-small cell lung cancer by downregulation of EGFR pathway. Molecular Carcinogenesis, 2016, 55, 2063-2076.	2.7	66
32	Psoriasin (S100A7): a novel mediator of angiogenesis. British Journal of Dermatology, 2016, 175, 1141-1142.	1.5	5
33	Endothelial Robo4 suppresses breast cancer growth and metastasis through regulation of tumor angiogenesis. Molecular Oncology, 2016, 10, 272-281.	4.6	37
34	RAGE: A novel target for breast cancer growth and metastasis. Oncoscience, 2016, 3, 52-53.	2.2	10
35	Non-contact method for directing electrotaxis. Scientific Reports, 2015, 5, 11005.	3.3	11
36	Conditioning solid tumor microenvironment through inflammatory chemokines and S100 family proteins. Cancer Letters, 2015, 365, 11-22.	7.2	32

#	Article	IF	CITATIONS
37	Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: Novel antiâ€ŧumor mechanisms of Cannabidiol in breast cancer. Molecular Oncology, 2015, 9, 906-919.	4.6	170
38	RAGE Mediates S100A7-Induced Breast Cancer Growth and Metastasis by Modulating the Tumor Microenvironment. Cancer Research, 2015, 75, 974-985.	0.9	112
39	miR-29b defines the pro-/anti-proliferative effects of S100A7 in breast cancer. Molecular Cancer, 2015, 14, 11.	19.2	24
40	Fatty acid binding protein 5 promotes metastatic potential of triple negative breast cancer cells through enhancing epidermal growth factor receptor stability. Oncotarget, 2015, 6, 6373-6385.	1.8	42
41	S-100 Proteins. , 2015, , 1-9.		0
42	S-100 Proteins. , 2015, , 4111-4117.		0
43	Cannabinoids as therapeutic agents in cancer: current status and future implications. Oncotarget, 2014, 5, 5852-5872.	1.8	161
44	<scp>CXCR</scp> 3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model. Immunology, 2014, 143, 109-119.	4.4	69
45	Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: Role of E2F1 and transcription factor dimerization partner 2. Hepatology, 2014, 59, 555-566.	7.3	98
46	Slit2–Robo4 Pathway Modulates Lipopolysaccharide-Induced Endothelial Inflammation and Its Expression Is Dysregulated during Endotoxemia. Journal of Immunology, 2014, 192, 385-393.	0.8	84
47	C-X-C motif chemokine 12/C-X-C chemokine receptor type 7 signaling regulates breast cancer growth and metastasis by modulating the tumor microenvironment. Breast Cancer Research, 2014, 16, R54.	5.0	93
48	CDK4 deficiency promotes genomic instability and enhances Myc-driven lymphomagenesis. Journal of Clinical Investigation, 2014, 124, 1672-84.	8.2	18
49	FAAH inhibition enhances anandamide mediated anti-tumorigenic effects in non-small cell lung cancer by downregulating the EGF/EGFR pathway. Oncotarget, 2014, 5, 2475-2486.	1.8	58
50	N-terminal Slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton. Retrovirology, 2013, 10, 2.	2.0	24
51	Differential role of psoriasin (S100A7) in estrogen receptor α positive and negative breast cancer cells occur through actin remodeling. Breast Cancer Research and Treatment, 2013, 138, 727-739.	2.5	19
52	The Adaptor Protein SLP-76 Regulates HIV-1 Release and Cell-to-Cell Transmission in T Cells. Journal of Immunology, 2012, 188, 2769-2777.	0.8	4
53	S100A7 Enhances Mammary Tumorigenesis through Upregulation of Inflammatory Pathways. Cancer Research, 2012, 72, 604-615.	0.9	103
54	Melanoma Cell Expression of CD200 Inhibits Tumor Formation and Lung Metastasis via Inhibition of Myeloid Cell Functions. PLoS ONE, 2012, 7, e31442.	2.5	37

#	Article	IF	CITATIONS
55	Activation of the Connective Tissue Growth Factor (CTGF)-Transforming Growth Factor β 1 (TGF-β 1) Axis in Hepatitis C Virus-Expressing Hepatocytes. PLoS ONE, 2012, 7, e46526.	2.5	38
56	Cannabinoid Receptors, CB1 and CB2, as Novel Targets for Inhibition of Non–Small Cell Lung Cancer Growth and Metastasis. Cancer Prevention Research, 2011, 4, 65-75.	1.5	121
57	Crosstalk between Chemokine Receptor CXCR4 and Cannabinoid Receptor CB2 in Modulating Breast Cancer Growth and Invasion. PLoS ONE, 2011, 6, e23901.	2.5	75
58	Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. Journal of Cellular Biochemistry, 2011, 112, 804-817.	2.6	87
59	Tumor-suppressive Effects of Psoriasin (S100A7) Are Mediated through the β-Catenin/T Cell Factor 4 Protein Pathway in Estrogen Receptor-positive Breast Cancer Cells. Journal of Biological Chemistry, 2011, 286, 44845-44854.	3.4	36
60	Cdc25A Regulates Matrix Metalloprotease 1 through Foxo1 and Mediates Metastasis of Breast Cancer Cells. Molecular and Cellular Biology, 2011, 31, 3457-3471.	2.3	57
61	A Novel Mechanism of Indole-3-Carbinol Effects on Breast Carcinogenesis Involves Induction of Cdc25A Degradation. Cancer Prevention Research, 2010, 3, 818-828.	1.5	24
62	Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Molecular Cancer Therapeutics, 2009, 8, 3117-3129.	4.1	193
63	LPS-induced MCP-1 expression in human microvascular endothelial cells is mediated by the tyrosine kinase, Pyk2 via the p38 MAPK/NF-κB-dependent pathway. Molecular Immunology, 2009, 46, 962-968.	2.2	52
64	Underlying Pathophysiology of HCV Infection in HIV-Positive Drug Users. Journal of Addictive Diseases, 2008, 27, 75-82.	1.3	9
65	The Tyrosine Kinase Pyk2 Mediates Lipopolysaccharide-Induced IL-8 Expression in Human Endothelial Cells. Journal of Immunology, 2008, 180, 5636-5644.	0.8	44
66	Slit-2 Induces a Tumor-suppressive Effect by Regulating Î ² -Catenin in Breast Cancer Cells. Journal of Biological Chemistry, 2008, 283, 26624-26633.	3.4	88
67	The Mammalian Ortholog of <i>Drosophila</i> MOF That Acetylates Histone H4 Lysine 16 Is Essential for Embryogenesis and Oncogenesis. Molecular and Cellular Biology, 2008, 28, 397-409.	2.3	194
68	Medicinal Plants and Cancer Chemoprevention. Current Drug Metabolism, 2008, 9, 581-591.	1.2	383
69	Phytoestrogens and Breast Cancer Prevention: Possible Mechanisms of Action. Environmental Health Perspectives, 2008, 116, 426-433.	6.0	167
70	S100A7-Downregulation Inhibits Epidermal Growth Factor-Induced Signaling in Breast Cancer Cells and Blocks Osteoclast Formation. PLoS ONE, 2008, 3, e1741.	2.5	34
71	Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells. Journal of Leukocyte Biology, 2007, 82, 465-476.	3.3	93
72	Cannabinoid receptor CB2 modulates the CXCL12/CXCR4-mediated chemotaxis of T lymphocytes. Molecular Immunology, 2006, 43, 2169-2179.	2.2	102

#	Article	IF	CITATIONS
73	Cbl and Akt regulate CXCL8-induced and CXCR1- and CXCR2-mediated chemotaxis. International Immunology, 2006, 18, 1315-1325.	4.0	29
74	HIV-1 gp120-mediated Apoptosis of T Cells Is Regulated by the Membrane Tyrosine Phosphatase CD45. Journal of Biological Chemistry, 2006, 281, 12289-12299.	3.4	23
75	Signal Transducer and Activator of Transcription Factor 1 Mediates Apoptosis Induced by Hepatitis C Virus and HIV Envelope Proteins in Hepatocytes. Journal of Infectious Diseases, 2006, 194, 670-681.	4.0	47
76	The Tyrosine Kinase, Pyk2/RAFTK, Mediates LPS-Induced IL-8 and MCP-1 Expression in Human Endothelial Cells Blood, 2006, 108, 1820-1820.	1.4	0
77	Modulation of Dendritic Cell Chemotaxis by HIV-gp120 Blood, 2006, 108, 1252-1252.	1.4	0
78	Structural proteins of Hepatitis C virus induce interleukin 8 production and apoptosis in human endothelial cells. Journal of General Virology, 2005, 86, 3291-3301.	2.9	37
79	Slit Protein-mediated Inhibition of CXCR4-induced Chemotactic and Chemoinvasive Signaling Pathways in Breast Cancer Cells. Journal of Biological Chemistry, 2004, 279, 9115-9124.	3.4	112
80	Cbl Regulates CXCR4-Mediated Chemotaxis and CXCR4 Receptor Internalization Blood, 2004, 104, 2658-2658.	1.4	0
81	HCV and HIV Envelope Proteins Co-Operatively Induce Fas-Mediated Apoptosis Via a Novel Stat1 Signaling Pathway Blood, 2004, 104, 604-604.	1.4	1
82	Akt Regulates the Activation-Induced Apoptosis of T Cells Mediated by HIV-1 gp120 Blood, 2004, 104, 3109-3109.	1.4	1
83	Cannabinoids Inhibit the CXCL12-Induced Migration of T Lymphocytes Blood, 2004, 104, 2667-2667.	1.4	12
84	Hepatitis C Virus and HIV Envelope Proteins Collaboratively Mediate Interleukin-8 Secretion through Activation of p38 MAP Kinase and SHP2 in Hepatocytes. Journal of Biological Chemistry, 2003, 278, 35755-35766.	3.4	82
85	Differential Regulation of CXCR4-mediated T-cell Chemotaxis and Mitogen-activated Protein Kinase Activation by the Membrane Tyrosine Phosphatase, CD45. Journal of Biological Chemistry, 2003, 278, 9536-9543.	3.4	78
86	Hepatitis C and Human Immunodeficiency Virus Envelope Proteins Cooperatively Induce Hepatocytic Apoptosis via an Innocent Bystander Mechanism. Journal of Infectious Diseases, 2003, 188, 1192-1204.	4.0	97
87	CXCR4/CCR5 Down-modulation and Chemotaxis Are Regulated by the Proteasome Pathway. Journal of Biological Chemistry, 2002, 277, 18111-18117.	3.4	42
88	Lipopolysaccharide-Induced Apoptosis of Endothelial Cells and Its Inhibition by Vascular Endothelial Growth Factor. Journal of Immunology, 2002, 168, 5860-5866.	0.8	106
89	SHP2 and cbl participate in α-chemokine receptor CXCR4–mediated signaling pathways. Blood, 2001, 97, 608-615.	1.4	77
90	Stromal Cell-Derived Factor 1α-Induced Chemotaxis in T Cells Is Mediated by Nitric Oxide Signaling Pathways. Journal of Immunology, 2001, 166, 3067-3074.	0.8	81

#	Article	IF	CITATIONS
91	HIV-1 Tat Induces Microvascular Endothelial Apoptosis Through Caspase Activation. Journal of Immunology, 2001, 167, 2766-2771.	0.8	75
92	c-Src Mediates Mitogenic Signals and Associates with Cytoskeletal Proteins upon Vascular Endothelial Growth Factor Stimulation in Kaposi's Sarcoma Cells. Journal of Immunology, 2000, 164, 1169-1174.	0.8	36
93	β-Chemokine Receptor CCR5 Signals through SHP1, SHP2, and Syk. Journal of Biological Chemistry, 2000, 275, 17263-17268.	3.4	77
94	Kaposi's Sarcoma-associated Herpesvirus-encoded G Protein-coupled Receptor Activation of c-Jun Amino-terminal Kinase/Stress-activated Protein Kinase and Lyn Kinase Is Mediated by Related Adhesion Focal Tyrosine Kinase/Proline-rich Tyrosine Kinase 2. Journal of Biological Chemistry, 1999, 274, 31863-31867.	3.4	51
95	Vascular Endothelial Growth Factor-C (VEGF-C) and its Receptors KDR and flt-4 are Expressed in AIDS-Associated Kaposi's Sarcoma. Journal of Investigative Dermatology, 1999, 113, 1047-1053.	0.7	105
96	The α-Chemokine, Stromal Cell-derived Factor-1α, Binds to the Transmembrane G-protein-coupled CXCR-4 Receptor and Activates Multiple Signal Transduction Pathways. Journal of Biological Chemistry, 1998, 273, 23169-23175.	3.4	554
97	β-Chemokine Receptor CCR5 Signals Via the Novel Tyrosine Kinase RAFTK. Blood, 1998, 91, 791-797.	1.4	120
98	Human Immunodeficiency Virus Tat Modulates the Flk-1/KDR Receptor, Mitogen-Activated Protein Kinases, and Components of Focal Adhesion in Kaposi's Sarcoma Cells. Journal of Virology, 1998, 72, 6131-6137.	3.4	105
99	RAFTK, a Novel Member of the Focal Adhesion Kinase Family, Is Phosphorylated and Associates with Signaling Molecules upon Activation of Mature T Lymphocytes. Journal of Experimental Medicine, 1997, 185, 1055-1064.	8.5	102