Qinqinq Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8479607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Cleavage of Lignin–Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwaveâ€Assisted Treatment with Deep Eutectic Solvent. ChemSusChem, 2017, 10, 1692-1700.	3.6	354
2	Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chemistry, 2018, 20, 2711-2721.	4.6	323
3	A strong, biodegradable and recyclable lignocellulosic bioplastic. Nature Sustainability, 2021, 4, 627-635.	11.5	291
4	Efficient Cleavage of Strong Hydrogen Bonds in Cotton by Deep Eutectic Solvents and Facile Fabrication of Cellulose Nanocrystals in High Yields. ACS Sustainable Chemistry and Engineering, 2017, 5, 7623-7631.	3.2	161
5	Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374, 465-471.	6.0	137
6	Production of Nanocellulose Using Hydrated Deep Eutectic Solvent Combined with Ultrasonic Treatment. ACS Omega, 2019, 4, 8539-8547.	1.6	112
7	Allâ€Natural, Degradable, Rolledâ€Up Straws Based on Cellulose Micro―and Nanoâ€Hybrid Fibers. Advanced Functional Materials, 2020, 30, 1910417.	7.8	109
8	Solar-assisted fabrication of large-scale, patternable transparent wood. Science Advances, 2021, 7, .	4.7	107
9	Continuous Synthesis of Hollow Highâ€Entropy Nanoparticles for Energy and Catalysis Applications. Advanced Materials, 2020, 32, e2002853.	11.1	93
10	In Situ Lignin Modification toward Photonic Wood. Advanced Materials, 2021, 33, e2001588.	11.1	86
11	Strong, Hydrostable, and Degradable Straws Based on Celluloseâ€Lignin Reinforced Composites. Small, 2021, 17, e2008011.	5.2	81
12	Scalable Wood Hydrogel Membrane with Nanoscale Channels. ACS Nano, 2021, 15, 11244-11252.	7.3	60
13	Ligninâ€Based Direct Ink Printed Structural Scaffolds. Small, 2020, 16, e1907212.	5.2	45
14	Tailored one-pot lignocellulose fractionation to maximize biorefinery toward versatile xylochemicals and nanomaterials. Green Chemistry, 2022, 24, 3257-3268.	4.6	43
15	Hierarchical Polyelemental Nanoparticles as Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions. Advanced Energy Materials, 2020, 10, 2001119.	10.2	39
16	Room temperature dissolving cellulose with a metal salt hydrate-based deep eutectic solvent. Carbohydrate Polymers, 2021, 272, 118473.	5.1	37
17	Rapid, Highâ€Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts. Small, 2019, 15, e1904881.	5.2	28
18	Fabrication of Cellulose–Graphite Foam via Ion Cross-linking and Ambient-Drying. Nano Letters, 2022, 22, 3931-3938.	4.5	21

QINQINQ XIA

#	Article	IF	CITATIONS
19	Wood/polyimide composite via a rapid substitution compositing method for extreme temperature conditions. Composites Science and Technology, 2021, 207, 108698.	3.8	19
20	Metalâ€Free Boron/Phosphorus Coâ€Doped Nanoporous Carbon for Highly Efficient Benzyl Alcohol Oxidation. Advanced Science, 2022, 9, e2200518.	5.6	16
21	High‣oading, Wellâ€Dispersed Phosphorus Confined on Nanoporous Carbon Surfaces with Enhanced Catalytic Activity and Cyclic Stability. Small Methods, 2021, 5, e2100964.	4.6	9