
Jose A Villadangos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/847906/publications.pdf Version: 2024-02-01

LOSE A VILLADANCOS

#	Article	IF	CITATIONS
1	Varicella Zoster Virus Impairs Expression of the Nonclassical Major Histocompatibility Complex Class I–Related Gene Protein (MR1). Journal of Infectious Diseases, 2023, 227, 391-401.	4.0	11
2	Differential antigenic requirements by diverse MR1â€restricted T cells. Immunology and Cell Biology, 2022, 100, 112-126.	2.3	3
3	Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annual Review of Immunology, 2022, 40, 525-557.	21.8	27
4	Marginal zone B cells acquire dendritic cell functions by trogocytosis. Science, 2022, 375, eabf7470.	12.6	36
5	Unlocking autofluorescence in the era of full spectrum analysis: Implications for immunophenotype discovery projects. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 922-941.	1.5	13
6	MAIT cells accumulate in ovarian cancer-elicited ascites where they retain their capacity to respond to MR1 ligands and cytokine cues. Cancer Immunology, Immunotherapy, 2022, 71, 1259-1273.	4.2	5
7	Ubiquitin-like protein 3 (UBL3) is required for MARCH ubiquitination of major histocompatibility complex class II and CD86. Nature Communications, 2022, 13, 1934.	12.8	13
8	Type 1 conventional dendritic cell fate and function are controlled by DC-SCRIPT. Science Immunology, 2021, 6, .	11.9	19
9	CD36 family members are TCR-independent ligands for CD1 antigen–presenting molecules. Science Immunology, 2021, 6, .	11.9	7
10	Dendritic cell Flt3 – regulation, roles and repercussions for immunotherapy. Immunology and Cell Biology, 2021, 99, 962-971.	2.3	22
11	MHC Class II Ubiquitination Regulates Dendritic Cell Function and Immunity. Journal of Immunology, 2021, 207, 2255-2264.	0.8	10
12	Regulation of dendritic cell function by Fc-Î ³ -receptors and the neonatal Fc receptor. Molecular Immunology, 2021, 139, 193-201.	2.2	10
13	Physiological substrates and ontogeny-specific expression of the ubiquitin ligases MARCH1 and MARCH8. Current Research in Immunology, 2021, 2, 218-228.	2.8	5
14	Butyrophilin 2A1 is essential for phosphoantigen reactivity by $\hat{I}^3\hat{I}$ T cells. Science, 2020, 367, .	12.6	275
15	Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in <i>MR1</i> . Science Immunology, 2020, 5, .	11.9	50
16	Endoplasmic reticulum chaperones stabilize ligand-receptive MR1 molecules for efficient presentation of metabolite antigens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24974-24985.	7.1	36
17	Ubiquitination of MHC Class II Is Required for Development of Regulatory but Not Conventional CD4+ T Cells. Journal of Immunology, 2020, 205, 1207-1216.	0.8	10
18	Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nature Immunology, 2020, 21, 636-648.	14.5	128

#	Article	IF	CITATIONS
19	A Natural Peptide Antigen within the Plasmodium Ribosomal Protein RPL6 Confers Liver TRM Cell-Mediated Immunity against Malaria in Mice. Cell Host and Microbe, 2020, 27, 950-962.e7.	11.0	45
20	Organ-specific isoform selection of fatty acid–binding proteins in tissue-resident lymphocytes. Science Immunology, 2020, 5, .	11.9	85
21	MR1: a multi-faceted metabolite sensor for T cell activation. Current Opinion in Immunology, 2020, 64, 124-129.	5.5	11
22	Virus-Mediated Suppression of the Antigen Presentation Molecule MR1. Cell Reports, 2020, 30, 2948-2962.e4.	6.4	35
23	RNF41 regulates the damage recognition receptor Clec9A and antigen cross-presentation in mouse dendritic cells. ELife, 2020, 9, .	6.0	16
24	Editorial overview: New proteins, cellular processes and intercellular interactions involved in antigen presentation. Current Opinion in Immunology, 2019, 58, iii-iv.	5.5	2
25	Downregulation of MHC Class I Expression by Influenza A and B Viruses. Frontiers in Immunology, 2019, 10, 1158.	4.8	65
26	Pathophysiological role of respiratory dysbiosis in hospital-acquired pneumonia. Lancet Respiratory Medicine,the, 2019, 7, 710-720.	10.7	66
27	MARCH ligases in immunity. Current Opinion in Immunology, 2019, 58, 38-43.	5.5	33
28	Membrane-associated RING-CH (MARCH) proteins down-regulate cell surface expression of the interleukin-6 receptor alpha chain (IL6Rα). Biochemical Journal, 2019, 476, 2869-2882.	3.7	7
29	Ubiquitin Ligase MARCH8 attenuates Graft versus Host Disease via Regulation of Gut Epithelial Cell Surface MHC II Expression Transplantation, 2018, 102, S300.	1.0	1
30	MR1 antigen presentation to MAIT cells: new ligands, diverse pathways?. Current Opinion in Immunology, 2018, 52, 108-113.	5.5	21
31	MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE, 2018, 13, e0200540.	2.5	29
32	Antibody-mediated targeting of antigen to C-type lectin-like receptors Clec9A and Clec12A elicits different vaccination outcomes. Molecular Immunology, 2017, 81, 143-150.	2.2	14
33	Reply to: "Differential expression of serpins may selectively license distinct granzyme B functions including antigen cross-presentation― Molecular Immunology, 2017, 87, 327-328.	2.2	0
34	Serpinb9 is a marker of antigen cross-presenting dendritic cells. Molecular Immunology, 2017, 82, 50-56.	2.2	17
35	DNAâ€based probes for flow cytometry analysis of endocytosis and recycling. Traffic, 2017, 18, 242-249.	2.7	11
36	Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity, 2017, 47, 135-147.e5.	14.3	133

#	Article	IF	CITATIONS
37	How MR1 Presents a Pathogen Metabolic Signature to Mucosal-Associated Invariant T (MAIT) Cells. Trends in Immunology, 2017, 38, 679-689.	6.8	29
38	The MARCH family joins the antigen crossâ€presentation party. Immunology and Cell Biology, 2017, 95, 737-738.	2.3	0
39	Antigenâ€specific impairment of adoptive Tâ€cell therapy against cancer: players, mechanisms, solutions and a hypothesis. Immunological Reviews, 2016, 272, 169-182.	6.0	11
40	The intracellular pathway for the presentation of vitamin B–related antigens by the antigen-presenting molecule MR1. Nature Immunology, 2016, 17, 531-537.	14.5	127
41	Target Density, Not Affinity or Avidity of Antigen Recognition, Determines Adoptive T Cell Therapy Outcomes in a Mouse Lymphoma Model. Journal of Immunology, 2016, 196, 3935-3942.	0.8	12
42	Understanding host–pathogen interaction. Intensive Care Medicine, 2016, 42, 2084-2086.	8.2	12
43	Ubiquitin ligase MARCH 8 cooperates with CD83 to control surface MHC II expression in thymic epithelium and CD4 T cell selection. Journal of Experimental Medicine, 2016, 213, 1695-1703.	8.5	55
44	Dendritic Cell Migration and Antigen Presentation Are Coordinated by the Opposing Functions of the Tetraspanins CD82 and CD37. Journal of Immunology, 2016, 196, 978-987.	0.8	43
45	Criteria for Dendritic Cell Receptor Selection for Efficient Antibody-Targeted Vaccination. Journal of Immunology, 2015, 194, 2696-2705.	0.8	63
46	Antibody-targeted vaccination to lung dendritic cells generates tissue-resident memory CD8 T cells that are highly protective against influenza virus infection. Mucosal Immunology, 2015, 8, 1060-1071.	6.0	124
47	MR1 presentation of vitamin B-based metabolite ligands. Current Opinion in Immunology, 2015, 34, 28-34.	5.5	46
48	Modulation of antigen presentation by intracellular trafficking. Current Opinion in Immunology, 2015, 34, 16-21.	5.5	34
49	Differential use of autophagy by primary dendritic cells specialized in cross-presentation. Autophagy, 2015, 11, 906-917.	9.1	74
50	The role of dendritic cell alterations in susceptibility to hospital-acquired infections during critical-illness related immunosuppression. Molecular Immunology, 2015, 68, 120-123.	2.2	22
51	Antigen-presenting cells look within during influenza infection. Nature Medicine, 2015, 21, 1123-1125.	30.7	4
52	Endogenous Murine BST-2/Tetherin Is Not a Major Restriction Factor of Influenza A Virus Infection. PLoS ONE, 2015, 10, e0142925.	2.5	12
53	Respiratory DC Use IFITM3 to Avoid Direct Viral Infection and Safeguard Virus-Specific CD8+ T Cell Priming. PLoS ONE, 2015, 10, e0143539.	2.5	34
54	Developmental Regulation of Synthesis and Dimerization of the Amyloidogenic Protease Inhibitor Cystatin C in the Hematopoietic System. Journal of Biological Chemistry, 2014, 289, 9730-9740.	3.4	24

#	Article	IF	CITATIONS
55	Hydrocortisone Prevents Immunosuppression by Interleukin-10+ Natural Killer Cells After Trauma-Hemorrhage. Critical Care Medicine, 2014, 42, e752-e761.	0.9	36
56	A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. Journal of Experimental Medicine, 2014, 211, 1585-1600.	8.5	245
57	Modulation of dendritic cell antigen presentation by pathogens, tissue damage and secondary inflammatory signals. Current Opinion in Pharmacology, 2014, 17, 64-70.	3.5	23
58	Inflammation Conditions Mature Dendritic Cells To Retain the Capacity To Present New Antigens but with Altered Cytokine Secretion Function. Journal of Immunology, 2014, 193, 3851-3859.	0.8	27
59	Rapid Deletion and Inactivation of CTLs upon Recognition of a Number of Target Cells over a Critical Threshold. Journal of Immunology, 2013, 191, 3534-3544.	0.8	15
60	Antigen processing. Current Opinion in Immunology, 2013, 25, 71-73.	5.5	2
61	Control of MHC II antigen presentation by ubiquitination. Current Opinion in Immunology, 2013, 25, 109-114.	5.5	24
62	Enhanced survival of lung tissue-resident memory CD8+ T cells during infection with influenza virus due to selective expression of IFITM3. Nature Immunology, 2013, 14, 238-245.	14.5	186
63	Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells. Vaccine, 2013, 31, 2310-2316.	3.8	21
64	Consequences of direct and indirect activation of dendritic cells on antigen presentation: Functional implications and clinical considerations. Molecular Immunology, 2013, 55, 175-178.	2.2	13
65	Targeting antigen to bone marrow stromal cellâ€2 expressed by conventional and plasmacytoid dendritic cells elicits efficient antigen presentation. European Journal of Immunology, 2013, 43, 595-605.	2.9	29
66	The Molecular Signature of Tissue Resident Memory CD8 T Cells Isolated from the Brain. Journal of Immunology, 2012, 189, 3462-3471.	0.8	310
67	Serpinb9 (Spi6)â€deficient mice are impaired in dendritic cellâ€mediated antigen crossâ€presentation. Immunology and Cell Biology, 2012, 90, 841-851.	2.3	15
68	Differential effect of CD69 targeting on bystander and antigen-specific T cell proliferation. Journal of Leukocyte Biology, 2012, 92, 145-158.	3.3	17
69	Shutdown of immunological priming and presentation after in vivo administration of adenovirus. Gene Therapy, 2012, 19, 1095-1100.	4.5	5
70	DEC-205 is a cell surface receptor for CpG oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16270-16275.	7.1	155
71	Immune Insufficiency After Experimental Transplantation Is Due to Defective Antigen Presentation Within Dendritic Cell Subsets. Biology of Blood and Marrow Transplantation, 2012, 18, S225.	2.0	0
72	The inflammatory cytokine, <scp>GM</scp> â€ <scp>CSF</scp> , alters the developmental outcome of murine dendritic cells. European Journal of Immunology, 2012, 42, 2889-2900.	2.9	55

#	Article	IF	CITATIONS
73	Autophagy and Mechanisms of Effective Immunity. Frontiers in Immunology, 2012, 3, 60.	4.8	20
74	Immune insufficiency during GVHD is due to defective antigen presentation within dendritic cell subsets. Blood, 2012, 119, 5918-5930.	1.4	32
75	Antibody responses initiated by Clec9A-bearing dendritic cells in normal and Batf3â^'/â^' mice. Molecular Immunology, 2012, 50, 9-17.	2.2	39
76	Role of UNC93B1 in the MHC class I cross presentation pathway. Molecular Immunology, 2012, 51, 24-25.	2.2	0
77	Indirectly activated dendritic cells are able to present antigens after maturation through sustained MHCII sysnthesis. Molecular Immunology, 2012, 51, 35.	2.2	0
78	CD69 Does Not Affect the Extent of T Cell Priming. PLoS ONE, 2012, 7, e48593.	2.5	19
79	A Modular and Combinatorial View of the Antigen Crossâ€Presentation Pathway in Dendritic Cells. Traffic, 2011, 12, 1677-1685.	2.7	60
80	GMâ€CSF increases crossâ€presentation and CD103 expression by mouse CD8 ⁺ spleen dendritic cells. European Journal of Immunology, 2011, 41, 2585-2595.	2.9	86
81	The Acquisition of Antigen Cross-Presentation Function by Newly Formed Dendritic Cells. Journal of Immunology, 2011, 186, 5184-5192.	0.8	101
82	A Critical Role for Granzymes in Antigen Cross-Presentation through Regulating Phagocytosis of Killed Tumor Cells. Journal of Immunology, 2011, 187, 1166-1175.	0.8	24
83	IL-10 Controls Cystatin C Synthesis and Blood Concentration in Response to Inflammation through Regulation of IFN Regulatory Factor 8 Expression. Journal of Immunology, 2011, 186, 3666-3673.	0.8	43
84	Differentiation of Inflammatory Dendritic Cells Is Mediated by NF-κB1–Dependent GM-CSF Production in CD4 T Cells. Journal of Immunology, 2011, 186, 5468-5477.	0.8	72
85	Induction of antigenâ€specific effectorâ€phase tolerance following vaccination against a previously ignored Bâ€cell lymphoma. Immunology and Cell Biology, 2011, 89, 595-603.	2.3	13
86	Factors determining the spontaneous activation of splenic dendritic cells in culture. Innate Immunity, 2011, 17, 338-352.	2.4	42
87	Bloodâ€stage <i>Plasmodium berghei</i> infection leads to shortâ€lived parasiteâ€associated antigen presentation by dendritic cells. European Journal of Immunology, 2010, 40, 1674-1681.	2.9	40
88	Reply to Burgdorf et al.: The mannose receptor is not involved in antigen cross-presentation by steady-state dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	7.1	4
89	Resident and Monocyte-Derived Dendritic Cells Become Dominant IL-12 Producers under Different Conditions and Signaling Pathways. Journal of Immunology, 2010, 185, 2125-2133.	0.8	36
90	Differential expression of pathogen-recognition molecules between dendritic cell subsets revealed by plasma membrane proteomic analysis. Molecular Immunology, 2010, 47, 1765-1773.	2.2	44

#	Article	IF	CITATIONS
91	Found in translation: the human equivalent of mouse CD8+ dendritic cells. Journal of Experimental Medicine, 2010, 207, 1131-1134.	8.5	111
92	Characterization of an Immediate Splenic Precursor of CD8+ Dendritic Cells Capable of Inducing Antiviral T Cell Responses. Journal of Immunology, 2009, 182, 4200-4207.	0.8	86
93	Cutting Edge: B220+CCR9â^' Dendritic Cells Are Not Plasmacytoid Dendritic Cells but Are Precursors of Conventional Dendritic Cells. Journal of Immunology, 2009, 183, 1514-1517.	0.8	37
94	Different cross-presentation pathways in steady-state and inflammatory dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20377-20381.	7.1	150
95	Endolysosomal proteases and their inhibitors in immunity. Nature Reviews Immunology, 2009, 9, 871-882.	22.7	114
96	Antigen presentation by dendritic cells in vivo. Current Opinion in Immunology, 2009, 21, 105-110.	5.5	136
97	The cell biology of crossâ€presentation and the role of dendritic cell subsets. Immunology and Cell Biology, 2008, 86, 353-362.	2.3	136
98	Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells. Nature Immunology, 2008, 9, 1244-1252.	14.5	202
99	Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or Tollâ€like receptor signaling. Immunology and Cell Biology, 2008, 86, 200-205.	2.3	90
100	Antigen-Presentation Properties of Plasmacytoid Dendritic Cells. Immunity, 2008, 29, 352-361.	14.3	449
101	Selective suicide of cross-presenting CD8 ⁺ dendritic cells by cytochrome <i>c</i> injection shows functional heterogeneity within this subset. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3029-3034.	7.1	151
102	Blood-stage <i>Plasmodium</i> infection induces CD8 ⁺ T lymphocytes to parasite-expressed antigens, largely regulated by CD81± ⁺ dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14509-14514.	7.1	179
103	Antigen-presenting cells and antigen presentation. , 2008, , 103-111.		0
104	Targeting the Gut Vascular Endothelium Induces Gut Effector CD8 T Cell Responses Via Cross-Presentation by Dendritic Cells. Journal of Immunology, 2007, 179, 5678-5685.	0.8	14
105	Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17753-17758.	7.1	64
106	Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. Journal of Experimental Medicine, 2007, 204, 2579-2590.	8.5	108
107	Cognate CD4+ Help Elicited by Resting Dendritic Cells Does Not Impair the Induction of Peripheral Tolerance in CD8+ T Cells. Journal of Immunology, 2007, 178, 2094-2103.	0.8	38
108	Hold On, the Monocytes Are Coming!. Immunity, 2007, 26, 390-392.	14.3	17

#	Article	IF	CITATIONS
109	Outside looking in: the inner workings of the crosspresentation pathway within dendritic cells. Trends in Immunology, 2007, 28, 45-47.	6.8	40
110	Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nature Reviews Immunology, 2007, 7, 543-555.	22.7	573
111	Antigen processing and recognition. Current Opinion in Immunology, 2007, 19, 63-65.	5.5	5
112	Migratory Dendritic Cells Transfer Antigen to a Lymph Node-Resident Dendritic Cell Population for Efficient CTL Priming. Immunity, 2006, 25, 153-162.	14.3	637
113	Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nature Immunology, 2006, 7, 165-172.	14.5	308
114	ls it a DC, is it an NK? No, it's an IKDC. Nature Medicine, 2006, 12, 167-168.	30.7	30
115	The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10729-10734.	7.1	357
116	Cytotoxic T Lymphocytes from Cathepsin B-deficient Mice Survive Normally in Vitro and in Vivo after Encountering and Killing Target Cells. Journal of Biological Chemistry, 2006, 281, 30485-30491.	3.4	45
117	Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery. Blood, 2005, 105, 2465-2472.	1.4	175
118	No driving without a license. Nature Immunology, 2005, 6, 125-126.	14.5	23
119	Control of MHC class II antigen presentation in dendritic cells: a balance between creative and destructive forces. Immunological Reviews, 2005, 207, 191-205.	6.0	139
120	Switching from a restricted to an effective CD4 T cell response by activating CD8+ murine dendritic cells with a Toll-like receptor 9 ligand. European Journal of Immunology, 2005, 35, 3209-3220.	2.9	9
121	Destructive potential of the aspartyl protease cathepsin D in MHC class Ilâ€restricted antigen processing. European Journal of Immunology, 2005, 35, 3442-3451.	2.9	60
122	Regulation of Antigen Presentation and Cross-Presentation in the Dendritic Cell Network: Facts, Hypothesis, and Immunological Implications. Advances in Immunology, 2005, 86, 241-305.	2.2	138
123	Cutting Edge: Generation of Splenic CD8+ and CD8â^' Dendritic Cell Equivalents in Fms-Like Tyrosine Kinase 3 Ligand Bone Marrow Cultures. Journal of Immunology, 2005, 174, 6592-6597.	0.8	491
124	Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: Limitations of the Langerhans cells paradigm. Seminars in Immunology, 2005, 17, 262-272.	5.6	138
125	Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunology and Cell Biology, 2004, 82, 91-98.	2.3	81
126	Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunological Reviews, 2004, 199, 9-26.	6.0	641

#	Article	IF	CITATIONS
127	Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nature Immunology, 2004, 5, 1143-1148.	14.5	387
128	Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood, 2004, 103, 2187-2195.	1.4	182
129	Selecting cells with different Alzheimer's disease gamma-secretase activity using FACS. Differential effect of presenilin exon 9 deletion on gamma- and epsilon-cleavage. FEBS Journal, 2003, 270, 495-506.	0.2	6
130	The Protease Inhibitor Cystatin C Is Differentially Expressed among Dendritic Cell Populations, but Does Not Control Antigen Presentation. Journal of Immunology, 2003, 171, 5003-5011.	0.8	74
131	Cutting Edge: Conventional CD8α+ Dendritic Cells Are Preferentially Involved in CTL Priming After Footpad Infection with Herpes Simplex Virus-1. Journal of Immunology, 2003, 170, 4437-4440.	0.8	171
132	Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood, 2003, 102, 2187-2194.	1.4	319
133	Invariant Chain Controls the Activity of Extracellular Cathepsin L. Journal of Experimental Medicine, 2002, 196, 1263-1270.	8.5	81
134	Presentation of antigens by MHC class II molecules: getting the most out of them. Molecular Immunology, 2001, 38, 329-346.	2.2	93
135	MHC Class II Expression Is Regulated in Dendritic Cells Independently of Invariant Chain Degradation. Immunity, 2001, 14, 739-749.	14.3	141
136	Regulation of CD1 Function and NK1.1+ T Cell Selection and Maturation by Cathepsin S. Immunity, 2001, 15, 909-919.	14.3	75
137	Early endosomal maturation of MHC class II molecules independently of cysteine proteases and H-2DM. EMBO Journal, 2000, 19, 882-891.	7.8	41
138	Proteolysis in MHC Class II Antigen Presentation. Immunity, 2000, 12, 233-239.	14.3	177
139	Cathepsin S Controls the Trafficking and Maturation of Mhc Class II Molecules in Dendritic Cells. Journal of Cell Biology, 1999, 147, 775-790.	5.2	210
140	Proteases involved in MHC dass II antigen presentation. Immunological Reviews, 1999, 172, 109-120.	6.0	223
141	Cathepsin S Required for Normal MHC Class II Peptide Loading and Germinal Center Development. Immunity, 1999, 10, 197-206.	14.3	486
142	Cathepsin L: Critical Role in li Degradation and CD4 T Cell Selection in the Thymus. Science, 1998, 280, 450-453.	12.6	624
143	Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4516-4521.	7.1	248
144	Cathepsin S activity regulates antigen presentation and immunity Journal of Clinical Investigation, 1998, 101, 2351-2363.	8.2	273

#	Article	IF	CITATIONS
145	Degradation of Mouse Invariant Chain: Roles of Cathepsins S and D and the Influence of Major Histocompatibility Complex Polymorphism. Journal of Experimental Medicine, 1997, 186, 549-560.	8.5	185
146	HLAâ€B27 (B*2701) specificity for peptides lacking Arg2 is determined by polymorphism outside the B pocket. Tissue Antigens, 1997, 49, 580-587.	1.0	34
147	Peptide binding to the differentially disease-associated HLA-B*2704 and B*2706 and to mutants mimicking their polimorphism. Human Immunology, 1996, 47, 18.	2.4	0
148	T-cell receptor usage in alloreactivity against HLA-B*2703 reveals much conservation of the antigenic structure of B*2705. Human Immunology, 1996, 47, 108.	2.4	0
149	Essential Role for Cathepsin S in MHC Class Il–Associated Invariant Chain Processing and Peptide Loading. Immunity, 1996, 4, 357-366.	14.3	502
150	Tâ€cell receptor usage in alloreactivity against HLAâ€B <i>*</i> 2703 reveals significant conservation of the antigenic structure of B <i>*</i> 2705. Tissue Antigens, 1996, 47, 478-484.	1.0	6
151	Binding of peptides naturally presented by HLA–B27 to the differentially disease–associated B*2704 and B*2706 subtypes, and to mutants mimicking their polymorphism. Tissue Antigens, 1996, 48, 509-518.	1.0	38
152	Modulation of peptide binding by HLA-B27 polymorphism in pockets A and B, and peptide specificity of B*2703. European Journal of Immunology, 1995, 25, 2370-2377.	2.9	34
153	Structure of HLA-B27-specific T cell epitopes. Antigen presentation in B2703 is limited mostly to a subset of the antigenic determinants on B2705. European Journal of Immunology, 1994, 24, 2548-2555.	2.9	15
154	Unusual topology of an HLA-B27 allospecific T cell epitope lacking peptide specificity. Journal of Immunology, 1994, 152, 2317-23.	0.8	37
155	Changes in the repertoire of peptides bound to HLA-B27 subtypes and to site-specific mutants inside and outside pocket B Journal of Experimental Medicine, 1993, 177, 613-620.	8.5	40
156	Cross-reactive T cell clones from unrelated individuals reveal similarities in peptide presentation between HLA-B27 and HLA-DR2. Journal of Immunology, 1993, 150, 2675-86.	0.8	13
157	Role of binding pockets for amino-terminal peptide residues in HLA-B27 allorecognition. Journal of Immunology, 1992, 149, 505-10.	0.8	22