Jose Iriondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8478754/publications.pdf

Version: 2024-02-01

		159585	128289
125	4,310	30	60
papers	citations	h-index	g-index
136	136	136	5136
130	130	130	3130
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	How successful are plant species reintroductions?. Biological Conservation, 2011, 144, 672-682.	4.1	493
2	Extreme climatic events and vegetation: the role of stabilizing processes. Global Change Biology, 2012, 18, 797-805.	9.5	376
3	Plant conservation: old problems, new perspectives. Biological Conservation, 2003, 113, 321-335.	4.1	209
4	Spatial analysis of genetic diversity as a tool for plant conservation. Biological Conservation, 2003, 113, 351-365.	4.1	181
5	Reproductive limits of a late-flowering high-mountain Mediterranean plant along an elevational climate gradient. New Phytologist, 2007, 173, 367-382.	7.3	148
6	Gap analysis: a tool for complementary genetic conservation assessment. Diversity and Distributions, 2008, 14, 1018-1030.	4.1	133
7	Local Adaptation Enhances Seedling Recruitment Along an Altitudinal Gradient in a High Mountain Mediterranean Plant. Annals of Botany, 2006, 99, 723-734.	2.9	129
8	Structural equation modelling: an alternative for assessing causal relationships in threatened plant populations. Biological Conservation, 2003, 113, 367-377.	4.1	123
9	Reassessing global change research priorities in mediterranean terrestrial ecosystems: how far have we come and where do we go from here?. Global Ecology and Biogeography, 2015, 24, 25-43.	5 . 8	111
10	Recent Anthropogenic Plant Extinctions Differ in Biodiversity Hotspots and Coldspots. Current Biology, 2019, 29, 2912-2918.e2.	3.9	109
11	Weighted-Interaction Nestedness Estimator (WINE): A new estimator to calculate over frequency matrices. Environmental Modelling and Software, 2009, 24, 1342-1346.	4.5	91
12	Factors affecting establishment of a gypsophyte: the case ofLepidium subulatum(Brassicaceae). American Journal of Botany, 2000, 87, 861-871.	1.7	87
13	Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genetic Resources and Crop Evolution, 2012, 59, 205-217.	1.6	82
14	Genetic structure of an endangered plant, <i>Antirrhinum microphyllum </i> (Scrophulariaceae): allozyme and RAPD analysis. American Journal of Botany, 2003, 90, 85-92.	1.7	74
15	Growing with siblings: a common ground for cooperation or for fiercer competition among plants?. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2531-2540.	2.6	64
16	Improving representativeness of genebank collections through species distribution models, gap analysis and ecogeographical maps. Biodiversity and Conservation, 2012, 21, 79-96.	2.6	61
17	Selection on flowering time in Mediterranean high-mountain plants under global warming. Evolutionary Ecology, 2011, 25, 777-794.	1.2	55
18	Quality standards for genetic reserve conservation of crop wild relatives, 2012, , 72-77.		52

#	Article	IF	CITATIONS
19	Patch Dynamics and Islands of Fertility in a High Mountain Mediterranean Community. Arctic, Antarctic, and Alpine Research, 2004, 36, 518-527.	1.1	50
20	Pollination patterns limit hybridization between two sympatric species of <i>Narcissus </i> (Amaryllidaceae). American Journal of Botany, 2007, 94, 1352-1359.	1.7	50
21	What causes conspecific plant aggregation? Disentangling the role of dispersal, habitat heterogeneity and plant–plant interactions. Oikos, 2016, 125, 1304-1313.	2.7	47
22	Phenology drives species interactions and modularity in a plant - flower visitor network. Scientific Reports, 2018, 8, 9386.	3.3	46
23	Demographic processes of upward range contraction in a long-lived Mediterranean high mountain plant. Ecography, 2011, 34, 85-93.	4.5	44
24	FEMALE REPRODUCTIVE SUCCESS OF NARROW ENDEMICERODIUM PAULARENSEIN CONTRASTING MICROHABITATS. Ecology, 2001, 82, 1734-1747.	3.2	43
25	Germination behaviour in seeds of Diplotaxis erucoides and D. virgata. Weed Research, 1995, 35, 495-502.	1.7	41
26	Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a <i>Silene – Hadena</i>	2.7	41
27	What shapes the altitudinal range of a high mountain Mediterranean plant? Recruitment probabilities from ovule to seedling stage. Ecography, 2008, 31, 731-740.	4.5	41
28	Joining up the dots: a systematic perspective of crop wild relative conservation and use, 0,, 87-124.		40
29	GERMINATION STUDIES IN ENDEMIC PLANT SPECIES OF THE IBERIAN PENINSULA. Israel Journal of Plant Sciences, 1995, 43, 239-247.	0.5	38
30	Decline of dry grassland specialists in <scp>M</scp> editerranean highâ€mountain communities influenced by recent climate warming. Journal of Vegetation Science, 2014, 25, 1394-1404.	2.2	35
31	How does climate change affect regeneration of Mediterranean highâ€mountain plants? An integration and synthesis of current knowledge. Plant Biology, 2018, 20, 50-62.	3.8	35
32	Vulnerability and determinants of reproductive success in the narrow endemic <i>Antirrhinum microphyllum</i> (Scrophulariaceae). American Journal of Botany, 2002, 89, 1171-1179.	1.7	34
33	Inherited variability in multiple traits determines fitness in populations of an annual legume from contrasting latitudinal origins. Annals of Botany, 2009, 103, 1279-1289.	2.9	31
34	National strategies for the conservation of crop wild relatives , 0, , 161-171.		31
35	Analysis of withinâ€population spatial genetic structure in <i>Antirrhinum microphyllum</i> //i> //i> //i> //i> //i> //i> //i>	1.7	29
36	Effects of the duration of cold stratification on early life stages of the Mediterranean alpine plant <i>Silene ciliata</i> . Plant Biology, 2015, 17, 344-350.	3.8	28

#	Article	IF	CITATIONS
37	Assessing ant seed predation in threatened plants: a case study. Acta Oecologica, 2005, 28, 213-220.	1.1	27
38	Rethinking the logistic approach for population dynamics of mutualistic interactions. Journal of Theoretical Biology, 2014, 363, 332-343.	1.7	27
39	Individual spatial aggregation correlates with between-population variation in fine-scale genetic structure of Silene ciliata (Caryophyllaceae). Heredity, 2016, 116, 417-423.	2.6	27
40	Review. Applications of ecogeography and geographic information systems in conservation and utilization of plant genetic resources. Spanish Journal of Agricultural Research, 2012, 10, 419.	0.6	27
41	Mycorrhizal preferences and fine spatial structure of the epiphytic orchid <i>Epidendrum rhopalostele</i> . American Journal of Botany, 2013, 100, 2339-2348.	1.7	26
42	Reproductive traits and evolutionary divergence between Mediterranean crops and their wild relatives. Plant Biology, 2018, 20, 78-88.	3.8	26
43	Unravelling genetics at the top: mountain islands or isolated belts?. Annals of Botany, 2012, 110, 1221-1232.	2.9	24
44	Dynamical scaling analysis of plant callus growth. Europhysics Letters, 2003, 63, 83-89.	2.0	23
45	Ploidy level and genome size of locally adapted populations of Silene ciliata across an altitudinal gradient. Plant Systematics and Evolution, 2012, 298, 139-146.	0.9	23
46	Species distribution models with field validation, a key approach for successful selection of receptor sites in conservation translocations. Global Ecology and Conservation, 2019, 19, e00653.	2.1	23
47	Spatial pattern of soil compaction: Trees' footprint on soil physical properties. Forest Ecology and Management, 2012, 283, 128-137.	3.2	22
48	Direct and indirect effects of shrub encroachment on alpine grasslands mediated by plant–flower visitor interactions. Functional Ecology, 2016, 30, 1521-1530.	3.6	22
49	Seedling dynamics at elevation limits: Complex interactions beyond seed and microsite limitations. American Journal of Botany, 2010, 97, 1791-1797.	1.7	21
50	Inbreeding at the edge: does inbreeding depression increase under more stressful conditions?. Oikos, 2012, 121, 1435-1445.	2.7	21
51	Evaluating the structure of commensalistic epiphyte–phorophyte networks: a comparative perspective of biotic interactions. AoB PLANTS, 2019, 11, plz011.	2.3	21
52	Plasticity to drought and ecotypic differentiation in populations of a crop wild relative. AoB PLANTS, 2020, 12, plaa006.	2.3	21
53	Assessing Intraspecific Variation in Effective Dispersal Along an Altitudinal Gradient: A Test in Two Mediterranean High-Mountain Plants. PLoS ONE, 2014, 9, e87189.	2.5	21
54	Response to artificial drying until droughtâ€induced death in different elevation populations of a highâ€mountain plant. Plant Biology, 2013, 15, 93-100.	3.8	20

#	Article	IF	Citations
55	Genetic patterns of habitat fragmentation and past climateâ€change effects in the Mediterranean highâ€mountain plant <i>Armeria caespitosa</i> (Plumbaginaceae). American Journal of Botany, 2013, 100, 1641-1650.	1.7	20
56	Broadening the Base, Narrowing the Task: Prioritizing Crop Wild Relative Taxa for Conservation Action. Crop Science, 2017, 57, 1042-1058.	1.8	20
57	Acquiring baseline information for successful plant translocations when there is no time to lose: the case of the neglected Critically Endangered Narcissus cavanillesii (Amaryllidaceae). Plant Ecology, 2016, 217, 193-206.	1.6	19
58	Autecology and conservation of Erodium paularense Fdez. Glez. & Izco. Biological Conservation, 1995, 72, 55-60.	4.1	18
59	National inventory and prioritization of crop wild relatives in Spain. Genetic Resources and Crop Evolution, 2018, 65, 1237-1253.	1.6	18
60	Dissecting components of flowering pattern: size effects on female fitness. Botanical Journal of the Linnean Society, 2008, 156, 227-236.	1.6	17
61	Geography and Environment Shape Landscape Genetics of Mediterranean Alpine Species Silene ciliata Poiret. (Caryophyllaceae). Frontiers in Plant Science, 2018, 9, 1698.	3.6	16
62	Effects of temperature and pretreatments on seed germination of nine semiarid species from NE Spain. Israel Journal of Plant Sciences, 2002, 50, 103-112.	0.5	15
63	Disentangling Facilitation Along the Life Cycle: Impacts of Plant–Plant Interactions at Vegetative and Reproductive Stages in a Mediterranean Forb. Frontiers in Plant Science, 2016, 7, 129.	3.6	15
64	<i>In situ</i> conservation of crop wild relatives: a strategy for identifying priority genetic reserve sites, 2012, , 7-19.		15
65	Ranking of critical species to preserve the functionality of mutualistic networks using the <i>k</i> -core decomposition. PeerJ, 2017, 5, e3321.	2.0	15
66	Micropropagation of Elaeagnus angustifolia from mature trees. Tree Physiology, 1995, 15, 691-693.	3.1	14
67	MICROPROPAGATION AND IN VITRO STORAGE OF CENTAURIUM RIGUALII ESTEVE (GENTIANACEAE). Israel Journal of Plant Sciences, 1996, 44, 115-123.	0.5	14
68	Genetic diversity within and among populations of a threatened species: Erodium paularense Fern. Gonz. & Izco. Molecular Ecology, 1997, 6, 813-820.	3.9	14
69	Congruence between geographic range distribution and local competitive ability of two <i>Lupinus</i> species. American Journal of Botany, 2011, 98, 1456-1464.	1.7	14
70	Gene flow effects on populations inhabiting marginal areas: Origin matters. Journal of Ecology, 2021, 109, 139-153.	4.0	14
71	A glacial survivor of the alpine Mediterranean region: phylogenetic and phylogeographic insights into <i>Silene ciliata</i> Pourr. (Caryophyllaceae). Peerl, 2015, 3, e1193.	2.0	14
72	Factors affecting establishment of a gypsophyte: the case of Lepidium subulatum (Brassicaceae). American Journal of Botany, 2000, 87, 861-71.	1.7	14

#	Article	IF	CITATIONS
73	The use of genetic markers in the identification and characterization of three recently discovered populations of a threatened plant species. Molecular Ecology, 1999, 8, S31-S40.	3.9	13
74	Identification of ecogeographical gaps in the Spanish <i>Aegilops</i> collections with potential tolerance to drought and salinity. PeerJ, 2017, 5, e3494.	2.0	13
75	CWRML: representing crop wild relative conservation and use data in XML. BMC Bioinformatics, 2008, 9, 116.	2.6	12
76	Kinship rivalry does not trigger specific allocation strategies in Lupinus angustifolius. Annals of Botany, 2012, 110, 165-175.	2.9	12
77	A Multispecies Collecting Strategy for Crop Wild Relatives Based on Complementary Areas with a High Density of Ecogeographical Gaps. Crop Science, 2017, 57, 1059-1069.	1.8	12
78	Herbivore corridors sustain genetic footprint in plant populations: a case for Spanish drove roads. PeerJ, 2019, 7, e7311.	2.0	12
79	Development of national crop wild relative conservation strategies in European countries. Genetic Resources and Crop Evolution, 2018, 65, 1385-1403.	1.6	11
80	Plant translocations in Europe and the Mediterranean: Geographical and climatic directions and distances from source to host sites. Journal of Ecology, 2021, 109, 2296-2308.	4.0	11
81	Searching for Abiotic Tolerant and Biotic Stress Resistant Wild Lentils for Introgression Breeding Through Predictive Characterization. Frontiers in Plant Science, 2022, 13, 817849.	3.6	11
82	Genetic variation in flowering phenology and reproductive performance in a Mediterranean high-mountain specialist,Armeria caespitosa(Plumbaginaceae). Botanical Journal of the Linnean Society, 2014, 176, 384-395.	1.6	10
83	Past selection shaped phenological differentiation among populations at contrasting elevations in a Mediterranean alpine plant. Environmental and Experimental Botany, 2020, 170, 103894.	4.2	10
84	Seventeen â€~extinct' plant species back to conservation attention in Europe. Nature Plants, 2021, 7, 282-286.	9.3	10
85	Genetic reserve location and design , 2008, , 23-64.		10
86	Micropropagation of an endangered plant species: Coronopus navasii (Brassicaceae). Plant Cell Reports, 1990, 8, 745-748.	5.6	9
87	Linking ecological niche models and common garden experiments to predict phenotypic differentiation in stressful environments: Assessing the adaptive value of marginal populations in an alpine plant. Global Change Biology, 2022, 28, 4143-4162.	9.5	9
88	Seed germination of four thyme species after short-term storage at low temperatures at several moisture contents. Seed Science and Technology, 2004, 32, 247-254.	1.4	8
89	Genetic Fingerprinting of Germplasm Accessions as an Aid for Species Conservation: A Case Study with Borderea chouardii (Dioscoreaceae), One of the Most Critically Endangered Iberian Plants. Annals of Botany, 2005, 96, 1283-1292.	2.9	8
90	Complex fine-scale spatial genetic structure in Epidendrum rhopalostele: an epiphytic orchid. Heredity, 2019, 122, 458-467.	2.6	8

#	Article	IF	Citations
91	Genetic diversity and differentiation in Patellifolia (Amaranthaceae) in the Macaronesian archipelagos and the Iberian Peninsula and implications for genetic conservation programmes. Genetic Resources and Crop Evolution, 2019, 66, 225-241.	1.6	8
92	Female Reproductive Success of Narrow Endemic Erodium paularense in Contrasting Microhabitats. Ecology, 2001, 82, 1734.	3.2	7
93	Spatial and ecogeographic approaches for selecting genetic reserves in Europe , 2012, , 20-28.		7
94	Costs and benefits of the mixed-mating system of <i>Narcissus serotinus</i> (Amaryllidaceae) in the conservation of small fragmented populations. Botany, 2014, 92, 113-122.	1.0	6
95	Evaluating Assisted Gene Flow in Marginal Populations of a High Mountain Species. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
96	Introduction: the integration of PGR conservation with protected area management , 2008, , 1-22.		6
97	Current and future threats and opportunities facing European crop Wild relative and landrace diversity, 2012, , 333-353.		6
98	Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a Silene? Hadena interaction. Oikos, 2007, 116, 1461-1472.	2.7	5
99	Strategies for the Development of Core Collections Based on Ecogeographical Data. Crop Science, 2011, 51, 656-666.	1.8	5
100	Assessing seed and microsite limitation on population dynamics of a gypsophyte through experimental soil crust disturbance and seed addition. Plant Ecology, 2017, 218, 595-607.	1.6	5
101	Ecotypic differentiation reveals seed colourâ€related alkaloid content in a crop wild relative. Plant Biology, 2019, 21, 942-950.	3.8	5
102	Predictive characterisation identifies global sources of acyanogenic germplasm of a key forage species. Crop and Pasture Science, 2019, 70, 546.	1.5	5
103	Predictive characterization methods for accessing and using CWR diversity, 0,, 64-77.		5
104	Effects of seed cryopreservation and priming on germination in several cultivars of. Annals of Botany, 1995, 75, 1-4.	2.9	4
105	Demographic effects of interacting species: exploring stable coexistence under increased climatic variability in a semiarid shrub community. Scientific Reports, 2021, 11, 3099.	3.3	4
106	Evaluation and Validation of Ecogeographical Core Collections using Phenotypic Data. Crop Science, 2011, 51, 694-703.	1.8	3
107	Dragging in mutualistic networks. Networks and Heterogeneous Media, 2015, 10, 37-52.	1.1	3
108	Resistance of an edaphic-island specialist to anthropogenic-driven fragmentation. AoB PLANTS, 2018, 10, .	2.3	3

#	Article	IF	CITATIONS
109	In situ Conservation Assessment of Forage and Fodder CWR in Spain Using Phytosociological Associations. Sustainability, 2019, 11, 5882.	3.2	3
110	The assembly of plant–patch networks in Mediterranean alpine grasslands. Journal of Plant Ecology, 2020, 13, 273-280.	2.3	3
111	Genetic reserve management , 2008, , 65-87.		3
112	Plant population monitoring methodologies for the in situ genetic conservation of cwr , 2008, , 88-123.		3
113	Demography gone wild in native species: four reasons to avoid the term & amp; quot; native invaders & amp; quot;. Web Ecology, 2014, 14, 85-87.	1.6	3
114	Characterization of microsatellites in the mountain plant Armeria caespitosa (Plumbaginaceae) and transferability to congeners. American Journal of Botany, 2012, 99, e292-e294.	1.7	2
115	Population dynamics of Aster pyrenaeus Desf., a threatened species of temperate forest edges: A view of meso- and micro-scales. Plant Biosystems, 2014, 148, 645-654.	1.6	2
116	Transcriptome assembly and polymorphism detection in <i>Silene ciliata</i> (Caryophyllaceae). Plant Genetic Resources: Characterisation and Utilisation, 2019, 17, 452-455.	0.8	2
117	Spatiotemporal seed transfer zones as an efficient restoration strategy in response to climate change. Ecosphere, 2021, 12, e03462.	2.2	1
118	Onâ€farm conservation priorities through a multicriteria monoâ€specific approach. Crop Science, 0, , .	1.8	1
119	Final considerations for the <i>in situ</i> conservation of plant genetic diversity, 2008, , 182-202.		1
120	Cryopreservation of Apium graveolens L. (Celery) Seeds. Biotechnology in Agriculture and Forestry, 2002, , 48-56.	0.2	1
121	A simple and bounded model of population dynamics for mutualistic networks. Networks and Heterogeneous Media, 2015, 10, 53-70.	1.1	1
122	Identification and assessment of the crop wild relatives of Spain that require most urgent conservation actions. Mediterranean Botany, 2018, 39, 67-75.	0.9	0
123	\tilde{A} reas marginales en ecosistemas alpinos: definici \tilde{A}^3 n y valor evolutivo en un contexto de cambio clim \tilde{A}_1 tico. Ecosistemas, 2021, 30, 2178.	0.4	0
124	Population and habitat recovery techniques for the in situ conservation of plant genetic diversity , 2008, , 124-168.		0
125	XV Reunión cientÃfica anual de ECOFLOR. Ecosistemas, 2018, 27, 132-133.	0.4	O