Tobias Haug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8477575/publications.pdf Version: 2024-02-01

TORIAS HALLC

#	Article	IF	CITATIONS
1	Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics, 2022, 94, .	45.6	521
2	Roadmap on Atomtronics: State of the art and perspective. AVS Quantum Science, 2021, 3, .	4.9	87
3	Capacity and Quantum Geometry of Parametrized Quantum Circuits. PRX Quantum, 2021, 2, .	9.2	40
4	Quantum-assisted simulator. Physical Review A, 2021, 104, .	2.5	31
5	Machine learning meets quantum foundations: A brief survey. AVS Quantum Science, 2020, 2, 034101.	4.9	30
6	Readout of the atomtronic quantum interference device. Physical Review A, 2018, 97, .	2.5	25
7	Classifying global state preparation via deep reinforcement learning. Machine Learning: Science and Technology, 2021, 2, 01LT02.	5.0	25
8	Topological pumping in Aharonov–Bohm rings. Communications Physics, 2019, 2, .	5.3	18
9	lterative quantum-assisted eigensolver. Physical Review A, 2021, 104, .	2.5	18
10	Mesoscopic Vortex–Meissner currents in ring ladders. Quantum Science and Technology, 2018, 3, 035006.	5.8	17
11	Aharonov-Bohm effect in mesoscopic Bose-Einstein condensates. Physical Review A, 2019, 100, .	2.5	16
12	Machine-learning engineering of quantum currents. Physical Review Research, 2021, 3, .	3.6	14
13	Long-distance dissipation-assisted transport of entangled states via a chiral waveguide. Physical Review Research, 2020, 2, .	3.6	13
14	Persistent current of SU(N) fermions. SciPost Physics, 2022, 12, .	4.9	13
15	Topological pumping of quantum correlations. Physical Review Research, 2020, 2, .	3.6	12
16	Andreev-reflection and Aharonov–Bohm dynamics in atomtronic circuits. Quantum Science and Technology, 2019, 4, 045001.	5.8	10
17	NISQ Algorithm for Hamiltonian simulation via truncated Taylor series. SciPost Physics, 2022, 12, .	4.9	8
18	Noisy intermediate-scale quantum algorithm for semidefinite programming. Physical Review A, 2022, 105.	2.5	7

Tobias Haug

#	Article	IF	CITATIONS
19	Fast-forwarding with NISQ processors without feedback loop. Quantum Science and Technology, 2022, 7, 015001.	5.8	6
20	Nonclassical states in strongly correlated bosonic ring ladders. Physical Review A, 2019, 99, .	2.5	5
21	Stroboscopic Hamiltonian engineering in the low-frequency regime with a one-dimensional quantum processor. Physical Review B, 2022, 105, .	3.2	3