Harshil Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8477476/publications.pdf

Version: 2024-02-01

33 papers 2,796 citations

304743

22

h-index

395702 33 g-index

44 all docs

44 docs citations

44 times ranked 5088 citing authors

#	Article	IF	CITATIONS
1	The nf-core framework for community-curated bioinformatics pipelines. Nature Biotechnology, 2020, 38, 276-278.	17.5	963
2	Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates. Molecular Cell, 2017, 65, 117-130.	9.7	211
3	Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nature Immunology, 2020, 21, 145-157.	14.5	193
4	SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene, 2015, 34, 5699-5708.	5.9	147
5	The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science, 2016, 353, .	12.6	147
6	The Scc2–Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nature Genetics, 2014, 46, 1147-1151.	21.4	114
7	ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial DNA and cholesterol metabolism. Brain, 2017, 140, 1595-1610.	7.6	105
8	Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Molecular Cell, 2021, 81, 767-783.e11.	9.7	72
9	Targeting the nucleotide salvage factor DNPH1 sensitizes <i>BRCA</i> -deficient cells to PARP inhibitors. Science, 2021, 372, 156-165.	12.6	68
10	Functional antibody and T cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study. Nature Cancer, 2021, 2, 1321-1337.	13.2	66
11	A Role for Chromatin Remodeling in Cohesin Loading onto Chromosomes. Molecular Cell, 2019, 74, 664-673.e5.	9.7	62
12	Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts. Genome Biology, 2014, 15, R23.	9.6	46
13	Division of Labor between PCNA Loaders in DNA Replication and Sister Chromatid Cohesion Establishment. Molecular Cell, 2020, 78, 725-738.e4.	9.7	45
14	Cyclin D mediates tolerance of genome-doubling in cancers with functional p53. Annals of Oncology, 2017, 28, 149-156.	1.2	43
15	Distinct modes of SMAD2 chromatin binding and remodeling shape the transcriptional response to NODAL/Activin signaling. ELife, 2017, 6, .	6.0	40
16	RTEL1 Regulates G4/R-Loops to Avert Replication-Transcription Collisions. Cell Reports, 2020, 33, 108546.	6.4	38
17	Epstein–Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression. Nucleic Acids Research, 2015, 43, 3563-3577.	14.5	37
18	Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nature Communications, 2021, 12, 5906.	12.8	36

#	Article	IF	CITATIONS
19	Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nature Cell Biology, 2022, 24, 633-644.	10.3	35
20	Repression of Divergent Noncoding Transcription by a Sequence-Specific Transcription Factor. Molecular Cell, 2018, 72, 942-954.e7.	9.7	34
21	A Distinct Class of Genome Rearrangements Driven by Heterologous Recombination. Molecular Cell, 2018, 69, 292-305.e6.	9.7	33
22	T Cell Receptor–Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103+ Memory Status of CD8 T Cells in the Brain. Frontiers in Immunology, 2018, 9, 1290.	4.8	25
23	Selective inhibition of cancer cell self-renewal through a Quisinostat-histone H1.0 axis. Nature Communications, 2020, 11, 1792.	12.8	25
24	The Transcription Co-Repressors MTG8 and MTG16 Regulate Exit of Intestinal Stem Cells From Their Niche and Differentiation Into Enterocyte vs Secretory Lineages. Gastroenterology, 2020, 159, 1328-1341.e3.	1.3	24
25	Role of Polycomb Group Proteins in the DNA Damage Response – A Reassessment. PLoS ONE, 2014, 9, e102968.	2.5	14
26	Disruption of the MSL complex inhibits tumour maintenance by exacerbating chromosomal instability. Nature Cell Biology, 2021, 23, 401-412.	10.3	13
27	Redistribution of <scp>EZH</scp> 2 promotes malignant phenotypes by rewiring developmental programmes. EMBO Reports, 2019, 20, e48155.	4.5	9
28	Rpd3L Contributes to the DNA Damage Sensitivity of <i> Saccharomyces cerevisiae </i> Checkpoint Mutants. Genetics, 2019, 211, 503-513.	2.9	9
29	Peripheral self-reactivity regulates antigen-specific CD8 T-cell responses and cell division under physiological conditions. Open Biology, 2016, 6, 160293.	3.6	7
30	Fission yeast telosomes: non-canonical histone-containing chromatin structures dependent on shelterin and RNA. Nucleic Acids Research, 2018, 46, 8865-8875.	14.5	7
31	C57BL/6 and 129 inbred mouse strains differ in Gbp2 and Gbp2b expression in response to inflammatory stimuli in vivo. Wellcome Open Research, 2019, 4, 124.	1.8	6
32	A network of transcription factors governs the dynamics of NODAL/Activin transcriptional responses. Journal of Cell Science, 2022, , .	2.0	6
33	A role for condensin in mediating transcriptional adaptation to environmental stimuli. Life Science Alliance, 2021, 4, e202000961.	2.8	3