Laureano de la Vega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8477458/publications.pdf Version: 2024-02-01

LAUREANO DE LA VECA

#	Article	IF	CITATIONS
1	A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Cell Death and Differentiation, 2022, 29, 105-117.	11.2	16
2	Pirin, an Nrf2-Regulated Protein, Is Overexpressed in Human Colorectal Tumors. Antioxidants, 2022, 11, 262.	5.1	8
3	The synthetic triterpenoids CDDO-TFEA and CDDO-Me, but not CDDO, promote nuclear exclusion of BACH1 impairing its activity. Redox Biology, 2022, 51, 102291.	9.0	12
4	Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nature Metabolism, 2022, 4, 534-546.	11.9	48
5	The stress-responsive kinase DYRK2 activates heat shock factor 1 promoting resistance to proteotoxic stress. Cell Death and Differentiation, 2021, 28, 1563-1578.	11.2	19
6	The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner. Phytomedicine, 2021, 86, 153062.	5.3	19
7	Emerging roles of DYRK2 in cancer. Journal of Biological Chemistry, 2021, 296, 100233.	3.4	34
8	TRAF6 Phosphorylation Prevents Its Autophagic Degradation and Re-Shapes LPS-Triggered Signaling Networks. Cancers, 2021, 13, 3618.	3.7	4
9	Phosphorylation-dependent regulation of the NOTCH1 intracellular domain by dual-specificity tyrosine-regulated kinase 2. Cellular and Molecular Life Sciences, 2020, 77, 2621-2639.	5.4	18
10	Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biology, 2020, 28, 101321.	9.0	111
11	High NRF2 Levels Correlate with Poor Prognosis in Colorectal Cancer Patients and with Sensitivity to the Kinase Inhibitor AT9283 In Vitro. Biomolecules, 2020, 10, 1365.	4.0	22
12	Isomeric O-methyl cannabidiolquinones with dual BACH1/NRF2 activity. Redox Biology, 2020, 37, 101689.	9.0	23
13	Regiodivergent Synthesis of <i>ortho</i> ―and <i>para</i> annabinoquinones. European Journal of Organic Chemistry, 2020, 2020, 7429-7434.	2.4	5
14	Downregulation of Keap1 Confers Features of a Fasted Metabolic State. IScience, 2020, 23, 101638.	4.1	21
15	Inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 2 perturbs 26S proteasome-addicted neoplastic progression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24881-24891.	7.1	39
16	Induction of the Antioxidant Response by the Transcription Factor NRF2 Increases Bioactivation of the Mutagenic Air Pollutant 3-Nitrobenzanthrone in Human Lung Cells. Chemical Research in Toxicology, 2019, 32, 2538-2551.	3.3	17
17	Transcription factors NRF2 and HSF1 have opposing functions in autophagy. Scientific Reports, 2017, 7, 11023.	3.3	29
18	Crosstalk between NRF2 and HIPK2 shapes cytoprotective responses. Oncogene, 2017, 36, 6204-6212.	5.9	75

Laureano de la Vega

#	Article	IF	CITATIONS
19	Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases. Molecular and Cellular Biology, 2016, 36, 2403-2417.	2.3	61
20	New Insights into the Role of Histone Deacetylases as Coactivators of Inflammatory Gene Expression. Antioxidants and Redox Signaling, 2015, 23, 85-98.	5.4	14
21	HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop. Journal of Molecular Cell Biology, 2013, 5, 27-38.	3.3	59
22	Homeodomain-interacting protein kinase 2-dependent repression of myogenic differentiation is relieved by its caspase-mediated cleavage. Nucleic Acids Research, 2013, 41, 5731-5745.	14.5	26
23	A Redox-Regulated SUMO/Acetylation Switch of HIPK2 Controls the Survival Threshold to Oxidative Stress. Molecular Cell, 2012, 46, 472-483.	9.7	100
24	Control of nuclear HIPK2 localization and function by a SUMO interaction motif. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 283-297.	4.1	41
25	Autoregulatory control of the p53 response by Siah-1L-mediated HIPK2 degradation. Biological Chemistry, 2009, 390, 1079-1083.	2.5	10
26	From top to bottom: The two faces of HIPK2 for regulation of the hypoxic response. Cell Cycle, 2009, 8, 1659-1664.	2.6	22
27	An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nature Cell Biology, 2009, 11, 85-91.	10.3	129
28	A Bacterial Small Molecule Undermining Immune Response Signaling. ChemBioChem, 2008, 9, 2575-2577.	2.6	2
29	The 73ÂkDa Subunit of the CPSF Complex Binds to the HIV-1 LTR Promoter and Functions as a Negative Regulatory Factor that Is Inhibited by the HIV-1 Tat Protein. Journal of Molecular Biology, 2007, 372, 317-330.	4.2	6
30	The 5-HT3 receptor antagonist tropisetron inhibits T cell activation by targeting the calcineurin pathway. Biochemical Pharmacology, 2005, 70, 369-380.	4.4	83
31	Mechanisms of HIV-1 Inhibition by the Lipid Mediator <i>N</i> -Arachidonoyldopamine. Journal of Immunology, 2005, 175, 3990-3999.	0.8	18
32	Immunosuppressive Activity of Endovanilloids: <i>N</i> -Arachidonoyl-Dopamine Inhibits Activation of the NF-κB, NFAT, and Activator Protein 1 Signaling Pathways. Journal of Immunology, 2004, 172, 2341-2351.	0.8	57
33	The CB1/VR1 agonist arvanil induces apoptosis through an FADD/caspase-8-dependent pathway. British Journal of Pharmacology, 2003, 140, 1035-1044.	5.4	26