Ann M Rajnicek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8476655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Bioelectricity-Related Articles Selected by Ann M. Rajnicek, Media Editor of <i>Bioelectricity</i> . Bioelectricity, 2022, 4, 59-64.	1.1	0
2	Effectiveness of biomaterial-based combination strategies for spinal cord repair – a systematic review and meta-analysis of preclinical literature. Spinal Cord, 2022, 60, 1041-1049.	1.9	2
3	Bioelectricity Buzz. Bioelectricity, 2022, 4, 126-132.	1.1	0
4	Recent, Bioelectricity-Related Articles Selected by Ann M. Rajnicek, Media Editor of <i>Bioelectricity</i> . Bioelectricity, 2021, 3, 147-153.	1.1	0
5	<i>Call for Special Issue Papers:</i> Methodology of Research and Applications of Electric Fields. Bioelectricity, 2020, 2, 3-3.	1.1	0
6	Richard Borgens, 1946–2019. Bioelectricity, 2020, 2, 205-205.	1.1	0
7	Recent Bioelectricity-Related Articles Selected by Ann M. Rajnicek, Media Editor of <i>Bioelectricity</i> . Bioelectricity, 2020, 2, 405-410.	1.1	0
8	Methodology of Research and Applications of Electric Fields. Bioelectricity, 2020, 2, 320-320.	1.1	1
9	Roles for IFT172 and Primary Cilia in Cell Migration, Cell Division, and Neocortex Development. Frontiers in Cell and Developmental Biology, 2019, 7, 287.	3.7	17
10	Electric field gradients and bipolar electrochemistry effects on neural growth: A finite element study on immersed electroactive conducting electrode materials. Electrochimica Acta, 2019, 317, 102-111.	5.2	13
11	Electrical Stimulation Directs Migration, Enhances and Orients Cell Division and Upregulates the Chemokine Receptors CXCR4 and CXCR2 in Endothelial Cells. Journal of Vascular Research, 2019, 56, 39-53.	1.4	32
12	Physiological strength electric fields modulate human T cell activation and polarisation. Scientific Reports, 2019, 9, 17604.	3.3	21
13	The Bioelectricity Revolution: A Discussion Among the Founding Associate Editors. Bioelectricity, 2019, 1, 8-15.	1.1	1
14	A refined rat primary neonatal microglial culture method that reduces time, cost and animal use. Journal of Neuroscience Methods, 2018, 304, 92-102.	2.5	8
15	Controlling Nerve Growth with an Electric Field Induced Indirectly in Transparent Conductive Substrate Materials. Advanced Healthcare Materials, 2018, 7, e1800473.	7.6	29
16	TiO2 surfaces support neuron growth during electric field stimulation. Materials Science and Engineering C, 2017, 79, 1-8.	7.3	8
17	The potential of Antheraea pernyi silk for spinal cord repair. Scientific Reports, 2017, 7, 13790.	3.3	16
18	Requirement of <i>Pax6</i> for the integration of guidance cues in cell migration. Royal Society Open Science, 2017, 4, 170625.	2.4	5

ANN M RAJNICEK

#	Article	IF	CITATIONS
19	The core planar cell polarity gene, <i>Vangl2</i> , directs adult corneal epithelial cell alignment and migration. Royal Society Open Science, 2016, 3, 160658.	2.4	16
20	The ciliary GTPase Arl13b regulates cell migration and cell cycle progression. Cell Adhesion and Migration, 2016, 10, 393-405.	2.7	16
21	Electric fields are novel determinants of human macrophage functions. Journal of Leukocyte Biology, 2016, 99, 1141-1151.	3.3	104
22	Contact-mediated control of radial migration of corneal epithelial cells. Molecular Vision, 2016, 22, 990-1004.	1.1	19
23	Interaction between hedgehog signalling and PAX6 dosage mediates maintenance and regeneration of the corneal epithelium. Molecular Vision, 2012, 18, 139-50.	1.1	18
24	The role of electrical signals in murine corneal wound reâ€epithelialization. Journal of Cellular Physiology, 2011, 226, 1544-1553.	4.1	36
25	A role for Lâ€Î±â€lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. British Journal of Pharmacology, 2010, 160, 762-771.	5.4	129
26	Electrical dimensions in cell science. Journal of Cell Science, 2009, 122, 4267-4276.	2.0	256
27	Chronic wound state exacerbated by oxidative stress in <i>Pax6</i> ^{+/â^'} aniridiaâ€related keratopathy. Journal of Pathology, 2008, 215, 421-430.	4.5	46
28	Alignment of corneal and lens epithelial cells by co-operative effects of substratum topography and DC electric fields. Biomaterials, 2008, 29, 2082-2095.	11.4	66
29	Prioritising guidance cues: Directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch. Developmental Biology, 2007, 312, 448-460.	2.0	51
30	Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity. Science, 2007, 316, 1212-1216.	12.6	463
31	Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry. Journal of Cell Science, 2006, 119, 1736-1745.	2.0	85
32	Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field. Journal of Cell Science, 2006, 119, 1723-1735.	2.0	100
33	Controlling Cell Behavior Electrically: Current Views and Future Potential. Physiological Reviews, 2005, 85, 943-978.	28.8	842
34	Has electrical growth cone guidance found its potential?. Trends in Neurosciences, 2002, 25, 354-359.	8.6	123
35	The Direction of Neurite Growth in a Weak DC Electric Field Depends on the Substratum: Contributions of Adhesivity and Net Surface Charge. Developmental Biology, 1998, 203, 412-423.	2.0	110
36	Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli, and Bacillus subtilis cells: implications for mechanisms of galvanotropism and bacterial growth. Journal of Bacteriology, 1994, 176, 702-713.	2.2	37

ANN M RAJNICEK

#	Article	IF	CITATIONS
37	Electric fieldâ€ i nduced orientation of rat hippocampal neurones in vitro. Experimental Physiology, 1992, 77, 229-232.	2.0	50
38	Electrical fields, nerve growth and nerve regeneration. Experimental Physiology, 1991, 76, 473-494.	2.0	89
39	Computer-aided analysis of polarized neurite growth effects of applied electrical fields on neuronal development. Journal of Neuroscience Methods, 1990, 32, 45-54.	2.5	4
40	An endogenous sodium current may mediate wound healing in Xenopus neurulae. Developmental Biology, 1988, 128, 290-299.	2.0	43