List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8475979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2015 Dutch food-based dietary guidelines. European Journal of Clinical Nutrition, 2016, 70, 869-878.	2.9	268
2	Validation of predictive models describing the growth of Listeria monocytogenes. International Journal of Food Microbiology, 1999, 46, 135-149.	4.7	228
3	A systematic approach to determine global thermal inactivation parameters for various food pathogens. International Journal of Food Microbiology, 2006, 107, 73-82.	4.7	228
4	Air-Liquid Interface Biofilms of Bacillus cereus: Formation, Sporulation, and Dispersion. Applied and Environmental Microbiology, 2007, 73, 1481-1488.	3.1	217
5	Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Applied and Environmental Microbiology, 1995, 61, 1614-1619.	3.1	212
6	Complex microbiota of a Chinese "Fen―liquor fermentation starter (Fen-Daqu), revealed by culture-dependent and culture-independent methods. Food Microbiology, 2012, 31, 293-300.	4.2	205
7	Future challenges to microbial food safety. International Journal of Food Microbiology, 2010, 139, S79-S94.	4.7	198
8	Information systems in food safety management. International Journal of Food Microbiology, 2006, 112, 181-194.	4.7	175
9	A Decision Support System for Prediction of the Microbial Spoilage in Foods. Journal of Food Protection, 1992, 55, 973-979.	1.7	174
10	Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. International Journal of Food Microbiology, 2014, 177, 29-36.	4.7	167
11	Diversity assessment of Listeria monocytogenes biofilm formation: Impact of growth condition, serotype and strain origin. International Journal of Food Microbiology, 2013, 165, 259-264.	4.7	163
12	Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the point of consumption. International Journal of Food Microbiology, 1996, 30, 55-70.	4.7	152
13	Relating microbiological criteria to food safety objectives and performance objectives. Food Control, 2009, 20, 967-979.	5.5	152
14	Modeling of Bacterial Growth with Shifts in Temperature. Applied and Environmental Microbiology, 1994, 60, 204-213.	3.1	144
15	<i>Theobroma cacao</i> L., "The Food of the Gods― Quality Determinants of Commercial Cocoa Beans, with Particular Reference to the Impact of Fermentation. Critical Reviews in Food Science and Nutrition, 2011, 51, 731-761.	10.3	141
16	Growth and Inactivation Models To Be Used in Quantitative Risk Assessments. Journal of Food Protection, 1998, 61, 1541-1549.	1.7	133
17	Evaluation of Data Transformations and Validation of a Model for the Effect of Temperature on Bacterial Growth. Applied and Environmental Microbiology, 1994, 60, 195-203.	3.1	121
18	Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annual Review of Food Science and Technology, 2016, 7, 457-482.	9.9	117

#	Article	IF	CITATIONS
19	A Quantitative Analysis of Cross-Contamination of Salmonella and Campylobacter spp. Via Domestic Kitchen Surfaces. Journal of Food Protection, 2004, 67, 1892-1903.	1.7	106
20	Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food. International Journal of Food Microbiology, 2005, 100, 179-186.	4.7	99
21	Microbiota dynamics related to environmental conditions during the fermentative production of Fen-Daqu, a Chinese industrial fermentation starter. International Journal of Food Microbiology, 2014, 182-183, 57-62.	4.7	98
22	Characterization of the microbial community in different types of Daqu samples as revealed by 16S rRNA and 26S rRNA gene clone libraries. World Journal of Microbiology and Biotechnology, 2015, 31, 199-208.	3.6	98
23	Modelling bacterial growth of Listeria monocytogenes as a function of water activity, pH and temperature. International Journal of Food Microbiology, 1993, 18, 139-149.	4.7	97
24	Phenotypic and Transcriptomic Analyses of Mildly and Severely Salt-Stressed <i>Bacillus cereus</i> ATCC 14579 Cells. Applied and Environmental Microbiology, 2009, 75, 4111-4119.	3.1	95
25	Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection. Applied and Environmental Microbiology, 2012, 78, 7769-7775.	3.1	93
26	Comparison of definitions of the lag phase and the exponential phase in bacterial growth. Journal of Applied Bacteriology, 1992, 72, 139-145.	1.1	91
27	Yeasts and lactic acid bacteria microbiota from masau (Ziziphus mauritiana) fruits and their fermented fruit pulp in Zimbabwe. International Journal of Food Microbiology, 2007, 120, 159-166.	4.7	89
28	Germination and outgrowth of spores of Bacillus cereus group members: Diversity and role of germinant receptors. Food Microbiology, 2011, 28, 199-208.	4.2	89
29	Modelling Bacterial Growth of Lactobacillus curvatus as a Function of Acidity and Temperature. Applied and Environmental Microbiology, 1995, 61, 2533-2539.	3.1	89
30	Comparison of Two Optical-Density-Based Methods and a Plate Count Method for Estimation of Growth Parameters of <i>Bacillus cereus</i> . Applied and Environmental Microbiology, 2010, 76, 1399-1405.	3.1	85
31	Quantification of the Effects of Salt Stress and Physiological State on Thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579. Applied and Environmental Microbiology, 2006, 72, 5884-5894.	3.1	79
32	Prevalence and Genetic Characterization of Shiga Toxin-Producing <i>Escherichia coli</i> Isolates from Slaughtered Animals in Bangladesh. Applied and Environmental Microbiology, 2008, 74, 5414-5421.	3.1	77
33	Reducing viral contamination from finger pads: handwashing is more effective than alcohol-based hand disinfectants. Journal of Hospital Infection, 2015, 90, 226-234.	2.9	77
34	Modelling the effect of ethanol on growth rate of food spoilage moulds. International Journal of Food Microbiology, 2005, 98, 261-269.	4.7	76
35	Diversity in biofilm formation and production of curli fimbriae and cellulose of <i>Salmonella</i> Typhimurium strains of different origin in high and low nutrient medium. Biofouling, 2012, 28, 51-63.	2.2	75
36	Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality. Annual Review of Food Science and Technology, 2018, 9, 383-410.	9.9	75

#	Article	IF	CITATIONS
37	Quantifying strain variability in modeling growth of Listeria monocytogenes. International Journal of Food Microbiology, 2015, 208, 19-29.	4.7	74
38	Development and validation of a combined temperature, water activity, pH model for bacterial growth rate of Lactobacillus curvatus. International Journal of Food Microbiology, 2001, 63, 57-64.	4.7	72
39	Risk-based Estimate of Effect of Foodborne Diseases on Public Health, Greece. Emerging Infectious Diseases, 2011, 17, 1581-1598.	4.3	72
40	Quantifying recontamination through factory environments?a review. International Journal of Food Microbiology, 2003, 80, 117-130.	4.7	71
41	Thermal stability of structurally different viruses with proven or potential relevance to food safety. Journal of Applied Microbiology, 2012, 112, 1050-1057.	3.1	71
42	Spoilage evaluation, shelf-life prediction, and potential spoilage organisms of tropical brackish water shrimp (Penaeus notialis) at different storage temperatures. Food Microbiology, 2015, 48, 8-16.	4.2	70
43	Acid resistance variability among isolates of Salmonella enterica serovar Typhimurium DT104. Journal of Applied Microbiology, 2005, 99, 859-866.	3.1	68
44	The HACCP concept: specification of criteria using quantitative risk assessment. Food Microbiology, 1995, 12, 81-90.	4.2	66
45	Quantifying variability on thermal resistance of Listeria monocytogenes. International Journal of Food Microbiology, 2015, 193, 130-138.	4.7	66
46	Sensitivity analysis in quantitative microbial risk assessment. International Journal of Food Microbiology, 2000, 58, 213-221.	4.7	65
47	The HACCP concept: identification of potentially hazardous micro-organisms. Food Microbiology, 1994, 11, 203-214.	4.2	64
48	Development and Validation of Experimental Protocols for Use of Cardinal Models for Prediction of Microorganism Growth in Food Products. Applied and Environmental Microbiology, 2004, 70, 1081-1087.	3.1	62
49	Quantitative microbiological risk assessment as a tool to obtain useful information for risk managers — Specific application to Listeria monocytogenes and ready-to-eat meat products. International Journal of Food Microbiology, 2010, 141, S170-S179.	4.7	62
50	Effects of Preculturing Conditions on Lag Time and Specific Growth Rate of Enterobacter sakazakii in Reconstituted Powdered Infant Formula. Applied and Environmental Microbiology, 2006, 72, 2721-2729.	3.1	61
51	Microbial food safety in the 21st century: Emerging challenges and foodborne pathogenic bacteria. Trends in Food Science and Technology, 2018, 81, 155-158.	15.1	61
52	Relevance of microbial interactions to predictive microbiology. International Journal of Food Microbiology, 2003, 84, 263-272.	4.7	58
53	Relevance of microbial finished product testing in food safety management. Food Control, 2016, 60, 31-43.	5.5	57
54	A decision support system for prediction of microbial spoilage in foods. Journal of Industrial Microbiology, 1993, 12, 324-329.	0.9	56

#	Article	IF	CITATIONS
55	Isolation and quantification of highly acid resistant variants of Listeria monocytogenes. International Journal of Food Microbiology, 2013, 166, 508-514.	4.7	56
56	Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. International Journal of Food Microbiology, 2006, 112, 120-128.	4.7	55
57	Consumption of raw vegetables and fruits: A risk factor for Campylobacter infections. International Journal of Food Microbiology, 2011, 144, 406-412.	4.7	55
58	Number of Salmonella on Chicken Breast Filet at Retail Level and Its Implications for Public Health Risk. Journal of Food Protection, 2007, 70, 2045-2055.	1.7	53
59	Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties. Food Microbiology, 2015, 45, 18-25.	4.2	53
60	Shiga toxin-producing Escherichia coli isolated from patients with diarrhoea in Bangladesh. Journal of Medical Microbiology, 2007, 56, 380-385.	1.8	51
61	Actual distribution of Cronobacter spp. in industrial batches of powdered infant formula and consequences for performance of sampling strategies. International Journal of Food Microbiology, 2011, 151, 62-69.	4.7	51
62	Risk assessment and risk management for safe foods: Assessment needs inclusion of variability and uncertainty, management needs discrete decisions. International Journal of Food Microbiology, 2015, 213, 118-123.	4.7	51
63	Fermentation characteristics of yeasts isolated from traditionally fermented masau (Ziziphus) Tj ETQq1 1 0.7843	914.rgBT /(4.7	Overlock 10 T
64	A Data Analysis of the Irradiation Parameter D10 for Bacteria and Spores under Various Conditions. Journal of Food Protection, 1999, 62, 1024-1032.	1.7	49
65	Stepwise quantitative risk assessment as a tool for characterization of microbiological food safety. Journal of Applied Microbiology, 2000, 88, 938-951.	3.1	49
66	Quantitative risk assessment: Is more complex always better?Simple is not stupid and complex is not always more correct. International Journal of Food Microbiology, 2009, 134, 57-62.	4.7	49
67	Impact of microbial distributions on food safety I. Factors influencing microbial distributions and modelling aspects. Food Control, 2012, 26, 601-609.	5.5	49
68	Transfer of noroviruses between fingers and fomites and food products. International Journal of Food Microbiology, 2013, 167, 346-352.	4.7	49
69	Population Diversity of <i>Listeria monocytogenes</i> LO28: Phenotypic and Genotypic Characterization of Variants Resistant to High Hydrostatic Pressure. Applied and Environmental Microbiology, 2010, 76, 2225-2233.	3.1	48
70	Metabolic capacity of <i>Bacillus cereus</i> strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics. Environmental Microbiology, 2007, 9, 2933-2944.	3.8	47
71	Inactivation Kinetics of Three Listeria monocytogenes Strains under High Hydrostatic Pressure. Journal of Food Protection, 2008, 71, 2007-2013.	1.7	47
72	Reprint of: Microbial food safety in the 21st century: Emerging challenges and foodborne pathogenic bacteria. Trends in Food Science and Technology, 2019, 84, 34-37.	15.1	47

MARCEL H ZWIETERING

#	Article	IF	CITATIONS
73	Microgradients in bacterial colonies: use of fluorescence ratio imaging, a non-invasive technique International Journal of Food Microbiology, 2000, 56, 71-80.	4.7	46
74	Identification of critical control points in the HACCP system with a quantitative effect on the safety of food products. Food Microbiology, 1995, 12, 93-98.	4.2	45
75	Short- and Long-Term Biomarkers for Bacterial Robustness: A Framework for Quantifying Correlations between Cellular Indicators and Adaptive Behavior. PLoS ONE, 2010, 5, e13746.	2.5	45
76	The impact of selected strains of probiotic bacteria on metabolite formation in set yoghurt. International Dairy Journal, 2014, 38, 1-10.	3.0	45
77	Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt. Food Microbiology, 2016, 59, 14-22.	4.2	45
78	Modelling growth rates of Listeria innocua as a function of lactate concentration. International Journal of Food Microbiology, 1994, 24, 113-123.	4.7	44
79	Analysis of the Role of RsbV, RsbW, and RsbY in Regulating Ï f B Activity in Bacillus cereus. Journal of Bacteriology, 2005, 187, 5846-5851.	2.2	43
80	Nutritive value of masau (Ziziphus mauritiana) fruits from Zambezi Valley in Zimbabwe. Food Chemistry, 2013, 138, 168-172.	8.2	43
81	A decision support system for the prediction of microbial food safety and food quality. International Journal of Food Microbiology, 1998, 42, 79-90.	4.7	41
82	Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions. International Journal of Food Microbiology, 2019, 291, 161-172.	4.7	41
83	Temperature control in solid substrate fermentation through discontinuous rotation. Applied Microbiology and Biotechnology, 1993, 40, 261-265.	3.6	40
84	Consumer food preparation and its implication for survival ofCampylobacter jejunion chicken. British Food Journal, 2007, 109, 548-561.	2.9	40
85	Meta-analysis for quantitative microbiological risk assessments and benchmarking data. Trends in Food Science and Technology, 2012, 25, 34-39.	15.1	40
86	Characterization and Exposure Assessment of Emetic Bacillus cereus and Cereulide Production in Food Products on the Dutch Market. Journal of Food Protection, 2016, 79, 230-238.	1.7	40
87	Minimal inhibitory concentrations of undissociated lactic, acetic, citric and propionic acid for Listeria monocytogenes under conditions relevant to cheese. Food Microbiology, 2016, 58, 63-67.	4.2	40
88	Statistical Aspects of Food Safety Sampling. Annual Review of Food Science and Technology, 2015, 6, 479-503.	9.9	39
89	Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt. Food Microbiology, 2015, 49, 104-115.	4.2	39
90	European alerting and monitoring data as inputs for the risk assessment of microbiological and chemical hazards in spices and herbs. Food Control, 2016, 69, 237-249.	5.5	39

#	Article	IF	CITATIONS
91	Next generation microbiological risk assessment—Potential of omics data for hazard characterisation. International Journal of Food Microbiology, 2018, 287, 28-39.	4.7	39
92	Quantitative Analysis of Population Heterogeneity of the Adaptive Salt Stress Response and Growth Capacity of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2007, 73, 4797-4804.	3.1	38
93	Extracting Additional Risk Managers Information from a Risk Assessment of Listeria monocytogenes in Deli Meats. Journal of Food Protection, 2007, 70, 1137-1152.	1.7	38
94	Random or systematic sampling to detect a localised microbial contamination within a batch of food. Food Control, 2011, 22, 1448-1455.	5.5	38
95	Microbial variability in growth and heat resistance of a pathogen and a spoiler: All variabilities are equal but some are more equal than others. International Journal of Food Microbiology, 2017, 240, 24-31.	4.7	38
96	Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of Listeria monocytogenes as proof of concept. Food Research International, 2020, 137, 109374.	6.2	38
97	Estimating the probability of recontamination via the air using Monte Carlo simulations. International Journal of Food Microbiology, 2003, 87, 1-15.	4.7	37
98	Validation of control measures in a food chain using the FSO concept. Food Control, 2010, 21, 1716-1722.	5.5	37
99	Microbiota of cocoa powder with particular reference to aerobic thermoresistant spore-formers. Food Microbiology, 2011, 28, 573-582.	4.2	37
100	Alternative approaches to the risk management of Listeria monocytogenes in low risk foods. Food Control, 2021, 123, 107601.	5.5	37
101	Practical considerations on food safety objectives. Food Control, 2005, 16, 817-823.	5.5	36
102	Occurrence and Characterization of Shiga Toxin–Producing <i>Escherichia coli</i> in Raw Meat, Raw Milk, and Street Vended Juices in Bangladesh. Foodborne Pathogens and Disease, 2010, 7, 1381-1385.	1.8	36
103	Bacterial concentration and diversity in fresh tropical shrimps (Penaeus notialis) and the surrounding brackish waters and sediment. International Journal of Food Microbiology, 2016, 218, 96-104.	4.7	36
104	Factors that inhibit growth of Listeria monocytogenes in nature-ripened Gouda cheese: A major role for undissociated lactic acid. Food Control, 2018, 84, 413-418.	5.5	36
105	Quantification of transfer of Listeria monocytogenes between cooked ham and slicing machine surfaces. Food Control, 2014, 44, 177-184.	5.5	35
106	Diversity of acid stress resistant variants of Listeria monocytogenes and the potential role of ribosomal protein S21 encoded by rpsU. Frontiers in Microbiology, 2015, 6, 422.	3.5	35
107	Modelling the interactions between Lactobacillus curvatus and Enterobacter cloacae. International Journal of Food Microbiology, 1999, 51, 67-79.	4.7	34
108	Microbiota Dynamics and Diversity at Different Stages of Industrial Processing of Cocoa Beans into Cocoa Powder. Applied and Environmental Microbiology, 2012, 78, 2904-2913.	3.1	34

#	Article	IF	CITATIONS
109	Surface behaviour of S. Typhimurium, S. Derby, S. Brandenburg and S. Infantis. Veterinary Microbiology, 2013, 161, 305-314.	1.9	34
110	Foodborne pathogens and their risk exposure factors associated with farm vegetables in Rwanda. Food Control, 2018, 89, 86-96.	5.5	34
111	Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety. Annual Review of Food Science and Technology, 2016, 7, 439-456.	9.9	33
112	The impact of oxygen availability on stress survival and radical formation of Bacillus cereus. International Journal of Food Microbiology, 2009, 135, 303-311.	4.7	32
113	Modelling the number of viable vegetative cells ofBacillus cereuspassing through the stomach. Journal of Applied Microbiology, 2009, 106, 258-267.	3.1	30
114	Factors influencing the accuracy of the plating method used to enumerate low numbers of viable micro-organisms in food. International Journal of Food Microbiology, 2010, 143, 32-40.	4.7	30
115	Prediction of spoilage of tropical shrimp (Penaeus notialis) under dynamic temperature regimes. International Journal of Food Microbiology, 2015, 210, 121-130.	4.7	30
116	An identification procedure for foodborne microbial hazards. International Journal of Food Microbiology, 1997, 38, 1-15.	4.7	29
117	Modeling the Interactions of Lactobacillus curvatus Colonies in Solid Medium: Consequences for Food Quality and Safety. Applied and Environmental Microbiology, 2002, 68, 3432-3441.	3.1	28
118	Quantification of microbial quality and safety in minimally processed foods. International Dairy Journal, 2002, 12, 263-271.	3.0	28
119	Identification of Novel Salmonella enterica Serovar Typhimurium DT104-Specific Prophage and Nonprophage Chromosomal Sequences among Serovar Typhimurium Isolates by Genomic Subtractive Hybridization. Applied and Environmental Microbiology, 2005, 71, 4979-4985.	3.1	28
120	Modelling the interactions between Lactobacillus curvatus and Enterobacter cloacae. International Journal of Food Microbiology, 1999, 51, 53-65.	4.7	27
121	Identification of ÏfB-Dependent Genes in Bacillus cereus by Proteome and In Vitro Transcription Analysis. Journal of Bacteriology, 2004, 186, 4100-4109.	2.2	26
122	Modeling the Effect of Ethanol Vapor on the Germination Time of Penicillium chrysogenum. Journal of Food Protection, 2005, 68, 1203-1207.	1.7	26
123	Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenicEscherichia colito intestinal epithelial cells. Journal of Applied Microbiology, 2009, 106, 1013-1021.	3.1	26
124	Modelling homogeneous and heterogeneous microbial contaminations in a powdered food product. International Journal of Food Microbiology, 2012, 157, 35-44.	4.7	26
125	The application of the Appropriate Level of Protection (ALOP) and Food Safety Objective (FSO) concepts in food safety management, using Listeria monocytogenes in deli meats as a case study. Food Control, 2013, 29, 382-393.	5.5	26
126	Fate of Listeria monocytogenes in Gouda microcheese: No growth, andÂsubstantial inactivation after extended ripening times. International Dairy Journal, 2013, 32, 192-198.	3.0	26

#	Article	IF	CITATIONS
127	Strain diversity and phage resistance in complex dairy starter cultures. Journal of Dairy Science, 2015, 98, 5173-5182.	3.4	26
128	Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba. International Journal of Food Microbiology, 2016, 217, 42-48.	4.7	26
129	Reduction of microbial counts during kitchen scale washing and sanitization of salad vegetables. Food Control, 2018, 85, 495-503.	5.5	26
130	Distribution of prophages and SGI-1 antibiotic-resistance genes among different Salmonella enterica serovar Typhimurium isolates. Microbiology (United Kingdom), 2006, 152, 2137-2147.	1.8	25
131	Processing environment monitoring in low moisture food production facilities: Are we looking for the right microorganisms?. International Journal of Food Microbiology, 2021, 356, 109351.	4.7	25
132	Perspective on the risk to infants in the Netherlands associated with Cronobacter spp. occurring in powdered infant formula. International Journal of Food Microbiology, 2009, 136, 232-237.	4.7	24
133	Isolation of Highly Heat-Resistant Listeria monocytogenes Variants by Use of a Kinetic Modeling-Based Sampling Scheme. Applied and Environmental Microbiology, 2011, 77, 2617-2624.	3.1	24
134	Extreme Heat Resistance of Food Borne Pathogens <i>Campylobacter jejuni, Escherichia coli</i> , and <i>Salmonella typhimurium</i> on Chicken Breast Fillet during Cooking. International Journal of Microbiology, 2012, 2012, 1-10.	2.3	24
135	Risk assessment strategies as a tool in the application of the Appropriate Level of Protection (ALOP) and Food Safety Objective (FSO) by risk managers. International Journal of Food Microbiology, 2013, 167, 8-28.	4.7	24
136	How NaCl and water content determine water activity during ripening of Gouda cheese, and the predicted effect on inhibition of Listeria monocytogenes. Journal of Dairy Science, 2016, 99, 5192-5201.	3.4	24
137	Two complementary approaches to quantify variability in heat resistance of spores of Bacillus subtilis. International Journal of Food Microbiology, 2017, 253, 48-53.	4.7	24
138	Pyruvate relieves the necessity of high induction levels of catalase and enables Campylobacter jejuni to grow under fully aerobic conditions. Letters in Applied Microbiology, 2008, 46, 377-382.	2.2	23
139	Indicator microorganisms in fresh vegetables from "farm to fork―in Rwanda. Food Control, 2017, 75, 126-133.	5.5	23
140	A computerised system for the identification of lactic acid bacteria. International Journal of Food Microbiology, 1997, 38, 65-70.	4.7	22
141	Traditional Processing of <i>Masau</i> Fruits (<i>Ziziphus Mauritiana</i>) in Zimbabwe. Ecology of Food and Nutrition, 2008, 47, 95-107.	1.6	22
142	Comparing Nonsynergistic Gamma Models with Interaction Models To Predict Growth of Emetic <i>Bacillus cereus</i> when Using Combinations of pH and Individual Undissociated Acids as Growth-Limiting Factors. Applied and Environmental Microbiology, 2010, 76, 5791-5801.	3.1	22
143	Arginine metabolism in sugar deprived Lactococcus lactis enhances survival and cellular activity, while supporting flavour production. Food Microbiology, 2012, 29, 27-32.	4.2	22
144	All food processes have a residual risk, some are small, some very small and some are extremely small: zero risk does not exist. Current Opinion in Food Science, 2021, 39, 83-92.	8.0	22

#	Article	IF	CITATIONS
145	Modeling Growth of Clostridium perfringens in Pea Soup During Cooling. Risk Analysis, 2005, 25, 61-73.	2.7	21
146	First Characterization of Bioactive Components in Soybean Tempe That Protect Human and Animal Intestinal Cells against Enterotoxigenic Escherichia coli (ETEC) Infection. Journal of Agricultural and Food Chemistry, 2010, 58, 7649-7656.	5.2	20
147	Impact of microbial distributions on food safety II. Quantifying impacts on public health and sampling. Food Control, 2012, 26, 546-554.	5.5	20
148	Quantifying Variability in Growth and Thermal Inactivation Kinetics of Lactobacillus plantarum. Applied and Environmental Microbiology, 2016, 82, 4896-4908.	3.1	20
149	Modelling of the microbiological quality of meat. Food Control, 1993, 4, 216-221.	5.5	19
150	Some aspects of modelling microbial quality of food. Food Control, 1993, 4, 89-96.	5.5	19
151	Evaluation of Immunomagnetic Separation and PCR for the Detection of Escherichia coli O157 in Animal Feces and Meats. Journal of Food Protection, 2006, 69, 2865-2869.	1.7	19
152	Quantification of the Effect of Culturing Temperature on Salt-Induced Heat Resistance of <i>Bacillus</i> Species. Applied and Environmental Microbiology, 2010, 76, 4286-4292.	3.1	19
153	Modelling: One word for many activities and uses. Food Microbiology, 2011, 28, 818-822.	4.2	19
154	Evaluation of different buffered peptone water (BPW) based enrichment broths for detection of Gram-negative foodborne pathogens from various food matrices. International Journal of Food Microbiology, 2015, 214, 109-115.	4.7	19
155	Deletion of the sigB Gene in Bacillus cereus ATCC 14579 Leads to Hydrogen Peroxide Hyperresistance. Applied and Environmental Microbiology, 2005, 71, 6427-6430.	3.1	18
156	Data Analysis of the Inactivation of Foodborne Microorganisms under High Hydrostatic Pressure To Establish Global Kinetic Parameters and Influencing Factors. Journal of Food Protection, 2011, 74, 2097-2106.	1.7	17
157	Experimental design, data processing and model fitting in predictive microbiology. , 2007, , 22-43.		16
158	The HACCP concept: specification of criteria using quantitative risk assessment. Food Microbiology, 1994, 11, 397-408.	4.2	15
159	Modelling the Hygienic Processing of Foods — a Global Process Overview. Food and Bioproducts Processing, 1997, 75, 159-167.	3.6	15
160	<i>Campylobacter jejuni</i> : a study on environmental conditions affecting culturability and <i>in vitro</i> adhesion/invasion. Journal of Applied Microbiology, 2009, 106, 924-931.	3.1	15
161	A novel derivation of a within-batch sampling plan based on a Poisson-gamma model characterising low microbial counts in foods. International Journal of Food Microbiology, 2013, 161, 84-96.	4.7	15
162	Mutandabota, a Food Product from Zimbabwe: Processing, Composition, and Socioeconomic Aspects. Ecology of Food and Nutrition, 2014, 53, 24-41.	1.6	15

#	Article	IF	CITATIONS
163	Modeling and Validation of the Ecological Behavior of Wild-Type Listeria monocytogenes and Stress-Resistant Variants. Applied and Environmental Microbiology, 2016, 82, 5389-5401.	3.1	15
164	Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of Listeria monocytogenes variants. International Journal of Food Microbiology, 2018, 283, 14-21.	4.7	15
165	Risk evaluation and management to reaching a suggested FSO in a steam meal. Food Microbiology, 2011, 28, 631-638.	4.2	14
166	The effect of different matrices on the growth kinetics and heat resistance of Listeria monocytogenes and Lactobacillus plantarum. International Journal of Food Microbiology, 2016, 238, 326-337.	4.7	14
167	A Biofilm Model for Flowing Systems in the Food Industry. Journal of Food Protection, 2003, 66, 1432-1438.	1.7	13
168	Yeasts preservation: alternatives for lyophilisation. World Journal of Microbiology and Biotechnology, 2012, 28, 3239-3244.	3.6	13
169	Multiple regression model for thermal inactivation of Listeria monocytogenes in liquid food products. Food Control, 2013, 29, 394-400.	5.5	13
170	The fate of Listeria monocytogenes in brine and on Gouda cheese following artificial contamination during brining. International Dairy Journal, 2014, 39, 253-258.	3.0	13
171	Not just variability and uncertainty; the relevance of chance for the survival of microbial cells to stress. Trends in Food Science and Technology, 2021, 118, 799-807.	15.1	13
172	Incorporating strain variability in the design of heat treatments: A stochastic approach and a kinetic approach. Food Research International, 2021, 139, 109973.	6.2	12
173	Lack of response of INT-407 cells to the presence of non-culturableCampylobacter jejuni. Epidemiology and Infection, 2008, 136, 1401-1406.	2.1	11
174	Direct-Imaging-Based Quantification of Bacillus cereus ATCC 14579 Population Heterogeneity at a Low Incubation Temperature. Applied and Environmental Microbiology, 2010, 76, 927-930.	3.1	11
175	Modeling peptide formation during the hydrolysis of β-casein by Lactococcus lactis. Process Biochemistry, 2012, 47, 83-93.	3.7	11
176	Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella entericaserovar Typhimurium. BMC Microbiology, 2013, 13, 294.	3.3	11
177	Food Safety Assurance Systems: Microbiological Testing, Sampling Plans, and Microbiological Criteria. , 2014, , 244-253.		11
178	Performance of stress resistant variants of Listeria monocytogenes in mixed species biofilms with Lactobacillus plantarum. International Journal of Food Microbiology, 2015, 213, 24-30.	4.7	11
179	Variability in lag duration of Listeria monocytogenes strains in half Fraser enrichment broth after stress affects the detection efficacy using the ISO 11290-1 method. International Journal of Food Microbiology, 2021, 337, 108914.	4.7	11
180	Multi-Tools Approach for Food Safety Risk Management of Steam Meals. Journal of Food Protection, 2009, 72, 2638-2645.	1.7	10

#	Article	IF	CITATIONS
181	Kinetics of <i>Lactobacillus plantarum</i> 44a in the faeces of tilapia (<i>Oreochromis niloticus</i>) after its intake in feed. Journal of Applied Microbiology, 2009, 107, 1967-1975.	3.1	10
182	Operationalising a performance objective with a microbiological criterion using a risk-based approach. Food Control, 2015, 58, 33-42.	5.5	10
183	Microbial testing in food safety: effect of specificity and sensitivity on sampling plans—how does the OC curve move. Current Opinion in Food Science, 2016, 12, 42-51.	8.0	10
184	Modelling the Hygienic Processing of Foods $\hat{a} \in$ " Influence of Individual Process Stages. Food and Bioproducts Processing, 1997, 75, 168-173.	3.6	9
185	Ranking the microbiological safety of foods: A new tool and its application to composite products. Trends in Food Science and Technology, 2013, 33, 124-138.	15.1	9
186	Quality Perceptions of Stakeholders in Beninese Export-Oriented Shrimp Chain. Journal of Food Protection, 2014, 77, 1642-1648.	1.7	9
187	Effects of different media on the enrichment of low numbers of Shiga toxin-producing Escherichia coli in mung bean sprouts and on the development of the sprout microbiome. International Journal of Food Microbiology, 2016, 232, 26-34.	4.7	9
188	Multi-criteria decision analysis to evaluate control strategies for preventing cross-contamination during fresh-cut lettuce washing. Food Control, 2021, 128, 108136.	5.5	9
189	Hydrolysis of $\hat{1}^2$ -casein by the cell-envelope-located PI-type protease of Lactococcus lactis: A modelling approach. International Dairy Journal, 2011, 21, 755-762.	3.0	8
190	Virulence aspects of Listeria monocytogenes LO28 high pressure-resistant variants. Microbial Pathogenesis, 2013, 59-60, 48-51.	2.9	8
191	Dynamic modelling of brewers' yeast and Cyberlindnera fabianii co-culture behaviour for steering fermentation performance. Food Microbiology, 2019, 83, 113-121.	4.2	8
192	A model to predict the fate of Listeria monocytogenes in different cheese types – A major role for undissociated lactic acid in addition to pH, water activity, and temperature. International Journal of Food Microbiology, 2021, 357, 109350.	4.7	8
193	On the risk of Enterobacter sakazakii in infant milk formula. Trends in Food Science and Technology, 2004, 15, 99-100.	15.1	7
194	Estimates of the burden of illnesses related to foodborne pathogens as from the syndromic surveillance data of 2013 in Rwanda. Microbial Risk Analysis, 2018, 9, 55-63.	2.3	7
195	Amino acid substitutions in ribosomal protein RpsU enable switching between high fitness and multiple-stress resistance in Listeria monocytogenes. International Journal of Food Microbiology, 2021, 351, 109269.	4.7	7
196	Perception of food-related risks: Difference between consumers and experts and changes over time. Food Control, 2022, 141, 109142.	5.5	7
197	Predictive models in microbiological risk assessment. , 2007, , 110-125.		6
198	Application of the Central Limit Theorem in microbial risk assessment: High number of servings reduces the Coefficient of Variation of food-borne burden-of-illness. International Journal of Food Microbiology, 2012, 153, 413-419.	4.7	6

2

#	Article	IF	CITATIONS
199	Determination of single cell lag times of Cronobacter spp. strains exposed to different stress conditions: Impact on detection. International Journal of Food Microbiology, 2016, 236, 161-166.	4.7	6
200	Variability in lag-duration of Campylobacter spp. during enrichment after cold and oxidative stress and its impact on growth kinetics and reliable detection. Food Research International, 2020, 134, 109253.	6.2	6
201	Predicting B. cereus growth and cereulide production in dairy mix. International Journal of Food Microbiology, 2022, 364, 109519.	4.7	6
202	Pivotal role of cheese salting method for the production of 3â€methylbutanal by <i>Lactococcus lactis</i> . International Journal of Dairy Technology, 2022, 75, 421-430.	2.8	6
203	Editorial: Integration of omics into MRA. International Journal of Food Microbiology, 2018, 287, 1-2.	4.7	5
204	Dose–response relationships and foodborne disease. , 2006, , 422-439.		5
205	Heterogeneity in single-cell outgrowth of Listeria monocytogenes in half Fraser enrichment broth is affected by strain variability and physiological state. Food Research International, 2021, 150, 110783.	6.2	5
206	Diffusion of lactic acid in a buffered gel system supporting growth ofLactobacillus curvatus. Journal of the Science of Food and Agriculture, 2002, 82, 1729-1734.	3.5	4
207	Comparing Nonsynergy Gamma Models and Interaction Models To Predict Growth of Emetic Bacillus cereus for Combinations of pH and Water Activity Values. Applied and Environmental Microbiology, 2011, 77, 5707-5715.	3.1	4
208	Risk assessment of Clostridium perfringens in Cornish pasties in the UK. Food Control, 2020, 108, 106822.	5.5	3
209	Thermal inactivation kinetics of seven genera of vegetative bacterial pathogens common to the food chain are similar after adjusting for effects of water activity, sugar content and pH. Microbial Risk Analysis, 2021, 19, 100174.	2.3	3
210	Microbiota of Tayohounta, a fermented baobab flavour food of Benin. African Journal of Biotechnology, 2011, 10, .	0.6	3
211	Intraspecific variability in heat resistance of fungal conidia. Food Research International, 2022, 156, 111302.	6.2	3
212	Safe food for infants: An EU-China project to enhance the control of safety risks raised by microbial and chemical hazards all along the infant food chains. , 2022, 2, 100009.		3
213	Optimal control of the dissolved oxygen concentration in an airlift-loop reactor. Computers and Chemical Engineering, 1992, 16, 563-572.	3.8	2
214	Computer support of food and bioprocess engineering education. Computers and Education, 1993, 21, 89-94.	8.3	2
215	The range of microbial risks in food processing. , 2005, , 31-45.		2

216 Integrating Concepts: a Case Study Using Enterobacter sakazakii in Infant Formula. , 2014, , 177-204.

#	Article	IF	CITATIONS
217	The Range of Microbial Risks in Food Processing. , 2016, , 43-54.		1
218	Regarding "The Economic Efficiency of Sampling Size: The Case of Beef Trim― Risk Analysis, 2013, 33, 350-352.	2.7	0
219	Response to letter to the Editor from M. Peleg on: Not just variability and uncertainty; the relevance of chance for the survival of microbial cells to stress. Trends in Food Science and Technology, 2022, 122, 332-332.	15.1	0