Song-Song Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/847425/publications.pdf

Version: 2024-02-01

93 papers 3,138 citations

32 h-index 52 g-index

94 all docs 94 docs citations

94 times ranked 2766 citing authors

#	Article	IF	CITATIONS
1	Diradicals or Zwitterions: The Chemical States of <i>m</i> -Benzoquinone and Structural Variation after Storage of Li Ions. CCS Chemistry, 2022, 4, 2768-2781.	7.8	14
2	Two three-dimensional mixed-ligated cobalt phosphonate coordination polymers: Syntheses, crystal structures and magnetic properties. Journal of Molecular Structure, 2022, 1248, 131456.	3.6	4
3	Engineering Heteronuclear Arrays from <scp>Ir^{III}â€Metalloligand</scp> and <scp>Co^{II}</scp> Showing Coexistence of Slow Magnetization Relaxation and Photoluminescence. Chinese Journal of Chemistry, 2022, 40, 931-938.	4.9	4
4	Hydrated metal ions as weak BrÃ,nsted acids show promoting effects on proton conduction. CrystEngComm, 2022, 24, 3886-3893.	2.6	8
5	Photoresponsive proton conduction in Zr-based metal–organic frameworks using the photothermal effect. Chemical Communications, 2022, 58, 8372-8375.	4.1	7
6	Thermo- and light-triggered reversible interconversion of dysprosium–anthracene complexes and their responsive optical, magnetic and dielectric properties. Chemical Science, 2021, 12, 929-937.	7.4	43
7	Thermo-induced structural transformation with synergistic optical and magnetic changes in ytterbium and erbium complexes. Chinese Chemical Letters, 2021, 32, 1519-1522.	9.0	11
8	An ultra-stable hafnium phosphonate MOF platform for comparing the proton conductivity of various guest molecules/ions. Chemical Communications, 2021, 57, 1238-1241.	4.1	24
9	From helices to superhelices: hierarchical assembly of homochiral van der Waals 1D coordination polymers. Chemical Science, 2021, 12, 12619-12630.	7.4	9
10	Dual Intrareticular Oxidation of Mixed-Ligand Metal–Organic Frameworks for Stepwise Electrochemiluminescence. Journal of the American Chemical Society, 2021, 143, 3049-3053.	13.7	81
11	Cobalt(II)â€dianthracene Frameworks: Assembly, Exfoliation and Properties. Chemistry - an Asian Journal, 2021, 16, 1456-1465.	3.3	8
12	Anhydrous Superprotonic Conductivity of a Uranyl-Based MOF from Ambient Temperature to 110 $\hat{A}^{\circ}\text{C.}$, 2021, 3, 744-751.		27
13	Chemically Exfoliated Semiconducting Bimetallic Porphyrinylphosphonate Metal–Organic Layers for Photocatalytic CO ₂ Reduction under Visible Light. ACS Applied Energy Materials, 2021, 4, 4319-4326.	5.1	22
14	Homochiral Dysprosium Phosphonate Nanowires: Morphology Control and Magnetic Dynamics. Chemistry - an Asian Journal, 2021, 16, 2648-2658.	3.3	7
15	Heterometallic uranyl-organic frameworks incorporating manganese and copper: Structures, ammonia sorption and magnetic properties. Polyhedron, 2021, 205, 115327.	2.2	7
16	Polar Lanthanide Anthracene Complexes Exhibiting Magnetic, Luminescent and Dielectric Properties. European Journal of Inorganic Chemistry, 2021, 2021, 4207-4215.	2.0	4
17	Dysprosium–dianthracene framework showing thermo-responsive magnetic and luminescence properties. Journal of Materials Chemistry C, 2021, 9, 10749-10758.	5.5	12
18	Layer or Tube? Uncovering Key Factors Determining the Rolling-up of Layered Coordination Polymers. Journal of the American Chemical Society, 2021, 143, 17587-17598.	13.7	10

#	Article	IF	CITATIONS
19	Controllable Macroscopic Chirality of Coordination Polymers through pH and Anionâ€Mediated Weak Interactions. Chemistry - A European Journal, 2021, 27, 16722-16734.	3.3	12
20	In situ thermal-induced generation of {Ag0Ag1} dimer within Co-Ag phosphonates. Chinese Chemical Letters, 2021, , .	9.0	2
21	Uranyl phosphonates: crystalline materials and nanosheets for temperature sensing. Dalton Transactions, 2021, 50, 17129-17139.	3.3	9
22	Luminescent Ir(<scp>iii</scp>)–Ln(<scp>iii</scp>) coordination polymers showing slow magnetization relaxation. Inorganic Chemistry Frontiers, 2020, 7, 4580-4592.	6.0	23
23	Polar layered coordination polymers incorporating triazacyclononane-triphosphonate metalloligands. Dalton Transactions, 2020, 49, 3758-3765.	3.3	9
24	Studying the Proton Conduction through the Grain Surface of UiO-66-NH ₂ . ACS Applied Energy Materials, 2020, 3, 8198-8204.	5.1	9
25	Metal phosphonates incorporating metalloligands: assembly, structures and properties. Chemical Communications, 2020, 56, 12090-12108.	4.1	36
26	Metal–Metalloligand Coordination Polymer Embedding Triangular Cobalt–Oxo Clusters: Solvent- and Temperature-Induced Crystal to Crystal Transformations and Associated Magnetism. Inorganic Chemistry, 2020, 59, 8935-8945.	4.0	19
27	Constructing Asymmetrical Ni-Centered {NiN ₂ O ₄ } Octahedra in Layered Metal–Organic Structures for Near-Room-Temperature Single-Phase Magnetoelectricity. Journal of the American Chemical Society, 2020, 142, 12841-12849.	13.7	7
28	Synergetic magnetic and luminescence switching <i>via</i> solid state phase transitions of the dysprosium–dianthracene complex. Journal of Materials Chemistry C, 2020, 8, 7369-7377.	5. 5	24
29	Interplay of anthracene luminescence and dysprosium magnetism by steric control of photodimerization. Dalton Transactions, 2019, 48, 13769-13779.	3.3	24
30	Incorporating Paramagnetic Ir ^{IV} Cl ₆ ^{2â€"} in H-Bonded Networks of Metal-Phosphonate Hydrate: Slow Magnetic Relaxation and Proton Conduction. Crystal Growth and Design, 2019, 19, 4836-4843.	3.0	10
31	Cyclometalated Iridium(III) Complexes Incorporating Aromatic Phosphonate Ligands: Syntheses, Structures, and Tunable Optical Properties. ACS Omega, 2019, 4, 16543-16550.	3 . 5	11
32	Two- and Three-Dimensional Heterometallic Ln[Ru2-α-Ammonium Diphosphonate] Nets: Structures, Porosity, Magnetism, and Proton Conductivity. Inorganic Chemistry, 2019, 58, 14034-14045.	4.0	15
33	Aryl–aryl coupling in a polycyclic aromatic hydrocarbon with embedded tetracoordinate boron centre. Organic and Biomolecular Chemistry, 2019, 17, 5060-5065.	2.8	16
34	Hofmann Metal–Organic Framework Monolayer Nanosheets as an Axial Coordination Platform for Biosensing. ACS Applied Materials & Discrete Samp; Interfaces, 2019, 11, 12986-12992.	8.0	32
35	Polymorphic layered copper phosphonates: exfoliation and proton conductivity studies. Dalton Transactions, 2019, 48, 6539-6545.	3.3	15
36	Octahedral erbium and ytterbium ion encapsulated in phosphorescent iridium complexes showing field-induced magnetization relaxation. Journal of Magnetism and Magnetic Materials, 2019, 484, 139-145.	2.3	8

#	Article	IF	CITATIONS
37	Homochiral iron(ii)-based metal–organic nanotubes: metamagnetism and selective nitric oxide adsorption in a confined channel. Chemical Communications, 2019, 55, 2825-2828.	4.1	25
38	From a layered iridium(<scp>iii</scp>)â€"cobalt(<scp>ii</scp>) organophosphonate to an efficient oxygen-evolution-reaction electrocatalyst. Chemical Communications, 2019, 55, 13920-13923.	4.1	15
39	Proton conductive metal phosphonate frameworks. Coordination Chemistry Reviews, 2019, 378, 577-594.	18.8	300
40	Coupling photo-, mechano- and thermochromism and single-ion-magnetism of two mononuclear dysprosium–anthracene–phosphonate complexes. Chemical Communications, 2018, 54, 3278-3281.	4.1	39
41	Iridium(III)-Based Metal–Organic Frameworks as Multiresponsive Luminescent Sensors for Fe ³⁺ , Cr ₂ O ₇ ^{2–} , and ATP ^{2–} in Aqueous Media. Inorganic Chemistry, 2018, 57, 1079-1089.	4.0	104
42	Bioinspired Engineering of Cobalt-Phosphonate Nanosheets for Robust Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 3895-3902.	11.2	69
43	Na ₂ Ir ^{IV} Cl ₆ : Spin–Orbital-Induced Semiconductor Showing Hydration-Dependent Structural and Magnetic Variations. Inorganic Chemistry, 2018, 57, 13252-13258.	4.0	15
44	Counteranion Modulated Crystal Growth and Function of One-Dimensional Homochiral Coordination Polymers: Morphology, Structures, and Magnetic Properties. Inorganic Chemistry, 2018, 57, 12143-12154.	4.0	17
45	Temperature controlled formation of polar copper phosphonates showing large dielectric anisotropy and a dehydration-induced switch from ferromagnetic to antiferromagnetic interactions. Chemical Communications, 2018, 54, 6276-6279.	4.1	5
46	Reversible ON–OFF switching of single-molecule-magnetism associated with single-crystal-to-single-crystal structural transformation of a decanuclear dysprosium phosphonate. Chemical Science, 2018, 9, 6424-6433.	7.4	54
47	Dynamic Motion of Organic Ligands in Polar Layered Cobalt Phosphonates. Chemistry - A European Journal, 2018, 24, 13495-13503.	3.3	5
48	Reversible SCâ€6C Transformation involving [4+4] Cycloaddition of Anthracene: A Singleâ€ion to Singleâ€Molecule Magnet and Yellowâ€Green to Blueâ€White Emission. Angewandte Chemie - International Edition, 2018, 57, 8577-8581.	13.8	97
49	Homochiral Erbium Coordination Polymers: Salt-Assisted Conversion from Triple to Quadruple Helices. Crystal Growth and Design, 2018, 18, 4045-4053.	3.0	13
50	A New Strategy towards Efficient and Recyclable Carbonâ€Chloride Bond Cleavage of Environmentally Harmful Organochlorides through Electrochemical Catalysis in Non–aqueous Media. ChemistrySelect, 2017, 2, 645-649.	1.5	2
51	Defective Metal–Organic Frameworks Incorporating Iridiumâ€Based Metalloligands: Sorption and Dye Degradation Properties. Chemistry - A European Journal, 2017, 23, 6615-6624.	3.3	44
52	Chiral expression from molecular to macroscopic level via pH modulation in terbium coordination polymers. Nature Communications, 2017, 8, 2131.	12.8	35
53	Formation Mechanism and Reversible Expansion and Shrinkage of Magnesiumâ€Based Homochiral Metal–Organic Nanotubes. Chemistry - A European Journal, 2017, 23, 1086-1092.	3.3	17
54	Proton Conductivities Manipulated by the Counter-Anions in 2D Co-Ca Coordination Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4476-4482.	2.0	13

#	Article	IF	CITATIONS
55	Cyclic Singleâ€Molecule Magnets: From Evenâ€Numbered Hexanuclear to Oddâ€Numbered Heptanuclear Dysprosium Clusters. European Journal of Inorganic Chemistry, 2016, 2016, 3184-3190.	2.0	12
56	Polymorphic Lanthanide Phosphonates Showing Distinct Magnetic Behavior. Inorganic Chemistry, 2016, 55, 5297-5304.	4.0	19
57	Magnetic materials based on 3d metal phosphonates. Coordination Chemistry Reviews, 2016, 319, 63-85.	18.8	109
58	Facile synthesis of a water stable 3D Eu-MOF showing high proton conductivity and its application as a sensitive luminescent sensor for Cu ²⁺ ions. Journal of Materials Chemistry A, 2016, 4, 16484-16489.	10.3	99
59	A Mixedâ€Valent Uranium Phosphonate Framework Containing U IV , U V , and U VI. Chemistry - A European Journal, 2016, 22, 11954-11957.	3.3	35
60	Enantioenriched Cobalt Phosphonate Containing \hat{l} "-Type Chains and Showing Slow Magnetization Relaxation. Inorganic Chemistry, 2016, 55, 9521-9523.	4.0	11
61	Homochiral mononuclear Dy-Schiff base complexes showing field-induced double magnetic relaxation processes. Dalton Transactions, 2016, 45, 690-695.	3.3	18
62	Cyclic single-molecule magnets: from the odd-numbered heptanuclear to a dimer of heptanuclear dysprosium clusters. Chemical Communications, 2016, 52, 2314-2317.	4.1	41
63	Multiple-Step Humidity-Induced Single-Crystal to Single-Crystal Transformations of a Cobalt Phosphonate: Structural and Proton Conductivity Studies. Inorganic Chemistry, 2016, 55, 3706-3712.	4.0	49
64	Chirality―and pHâ€Controlled Supramolecular Isomerism in Cobalt Phosphonates and Its Impact on the Magnetic Behavior. Chemistry - A European Journal, 2015, 21, 17336-17343.	3.3	17
65	Co–Ca Phosphonate Showing Humidity-Sensitive Single Crystal to Single Crystal Structural Transformation and Tunable Proton Conduction Properties. Chemistry of Materials, 2015, 27, 8116-8125.	6.7	137
66	pH-controlled polymorphism in a layered dysprosium phosphonate and its impact on the magnetization relaxation. Chemical Communications, 2015, 51, 2649-2652.	4.1	28
67	Modulating the microporosity of cobalt phosphonates via positional isomerism of co-linkers. CrystEngComm, 2015, 17, 8926-8932.	2.6	11
68	A cryogenic luminescent ratiometric thermometer based on a lanthanide phosphonate dimer. Journal of Materials Chemistry C, 2015, 3, 8480-8484.	5.5	87
69	Lanthanide phosphonates with pseudo-D _{5h} local symmetry exhibiting magnetic and luminescence bifunctional properties. Inorganic Chemistry Frontiers, 2015, 2, 558-566.	6.0	56
70	Homochiral metal phosphonate nanotubes. Chemical Communications, 2015, 51, 15141-15144.	4.1	26
71	Switching on Single-Molecule-Magnet Behavior in MnIII-Schiff Base Out-of-Plane Dimers by the Phosphonate Terminal Ligand. European Journal of Inorganic Chemistry, 2014, 2014, 1042-1050.	2.0	9
72	Homochiral Cobalt Phosphonates Containing Δâ€Type Chains with a Tunable Interlayer Distance and a Fieldâ€Induced Phase Transition. Chemistry - A European Journal, 2014, 20, 17137-17142.	3.3	26

#	Article	IF	CITATIONS
73	Polar metal phosphonate containing unusual 144 -OH bridged double chains showing canted antiferromagnetism with large coercivity. Chemical Communications, 2014, 50, 3979.	4.1	37
74	Exfoliated layered copper phosphonate showing enhanced adsorption capability towards Pb ions. Chemical Communications, 2014, 50, 10622.	4.1	20
75	A luminescent heptanuclear Dylr6 complex showing field-induced slow magnetization relaxation. Chemical Communications, 2014, 50, 8356.	4.1	36
76	Enhancing Proton Conduction in 2D Co–La Coordination Frameworks by Solid-State Phase Transition. Journal of the American Chemical Society, 2014, 136, 9292-9295.	13.7	144
77	Racemic metal phosphonates based on 1-phosphonomethyl-2-benzimidazol-piperidine. CrystEngComm, 2013, 15, 10316.	2.6	10
78	Breathing Effect in a Cobalt Phosphonate upon Dehydration/Rehydration: A Singleâ€Crystalâ€ŧo‧ingleâ€Crystal Study. Chemistry - A European Journal, 2013, 19, 16394-16402.	3.3	40
79	Supramolecular Isomerism of Oneâ€Dimensional Copper(II) Phosphonate and Its Influence on the Magnetic Properties. ChemPlusChem, 2012, 77, 1087-1095.	2.8	31
80	An enantioenriched vanadium phosphonate generated via asymmetric chiral amplification of crystallization from achiral sources showing a single-crystal-to-single-crystal dehydration process. Chemical Communications, 2012, 48, 6565.	4.1	39
81	A Racemic Polar Cobalt Phosphonate with Weak Ferromagnetism. Chemistry - A European Journal, 2012, 18, 10839-10842.	3.3	32
82	Enhanced Magnetic Hardness in a Nanoscale Metal–Organic Hybrid Ferrimagnet. Chemistry - A European Journal, 2012, 18, 9534-9542.	3.3	33
83	Layered manganese 4-phosphonoisophthalates (4-piH4) embedding Mn-O chains with metamagnetism in Mn3(4-piH)2(H2O)3·H2O. Science China Chemistry, 2012, 55, 1047-1054.	8.2	4
84	Tuning the Spin State of Cobalt in a Co–La Heterometallic Complex through Controllable Coordination Sphere of La. Angewandte Chemie - International Edition, 2011, 50, 5504-5508.	13.8	45
85	Pillared Layered Metal Phosphonates Showing Fieldâ€Induced Magnetic Transitions. European Journal of Inorganic Chemistry, 2010, 2010, 895-901.	2.0	8
86	Homochiral Lanthanide Phosphonates with Brick-Wall-Shaped Layer Structures Showing Chiroptical and Catalytical Properties. Inorganic Chemistry, 2009, 48, 1901-1905.	4.0	57
87	Microwave-assisted hydrothermal syntheses of metal phosphonates with layered and framework structures. Dalton Transactions, 2007, , 4222.	3.3	16
88	Lanthanide Diruthenium(II,III) Compounds Showing Layered and PtS-Type Open Framework Structures. Inorganic Chemistry, 2007, 46, 8524-8532.	4.0	68
89	Anion-Directed Self-Assembly of Lanthanide–notp Compounds and Their Fluorescence, Magnetic, and Catalytic Properties. Chemistry - A European Journal, 2007, 13, 2333-2343.	3.3	96
90	Three-Dimensional Lanthanide(III)–Copper(II) Compounds Based on an Unsymmetrical 2-Pyridylphosphonate Ligand: An Experimental and Theoretical Study. Chemistry - A European Journal, 2007, 13, 4759-4769.	3.3	75

Song-Song Bao

#	Article	IF	CITATIONS
91	Copper and cadmium phosphonates based on 2-quinolinephosphonate. Solid State Sciences, 2007, 9, 686-692.	3.2	9
92	Incorporation of Triazacyclononane into the Metal Phosphonate Backbones. Inorganic Chemistry, 2006, 45, 1124-1129.	4.0	57
93	Sodium Cobalt Aminomethylidenediphosphonate with a Novel Open Framework Structure. Inorganic Chemistry, 2003, 42, 5037-5039.	4.0	29