Peter Dietrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8473430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone Journal, 2011, 10, 955-973.	2.2	401
2	Footprint characteristics revised for fieldâ€scale soil moisture monitoring with cosmicâ€ray neutrons. Water Resources Research, 2015, 51, 5772-5790.	4.2	189
3	Identification of the permeability distribution in soil by hydraulic tomography. Inverse Problems, 1995, 11, 353-360.	2.0	167
4	A travel time based hydraulic tomographic approach. Water Resources Research, 2003, 39, .	4.2	144
5	Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environmental Earth Sciences, 2013, 70, 3935-3943.	2.7	138
6	Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. Journal of Contaminant Hydrology, 2012, 136-137, 131-144.	3.3	95
7	The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory. Environmental Earth Sciences, 2017, 76, 1.	2.7	93
8	Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrology and Earth System Sciences, 2017, 21, 5009-5030.	4.9	93
9	A Rapid Method for Hydraulic Profiling in Unconsolidated Formations. Ground Water, 2008, 46, 323-328.	1.3	92
10	Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environmental Earth Sciences, 2012, 67, 335-349.	2.7	91
11	Characterizing Hydraulic Conductivity with the Direct-Push Permeameter. Ground Water, 2007, 45, 409-419.	1.3	83
12	Field evaluation of methods for determining hydraulic conductivity from grain size data. Journal of Hydrology, 2011, 400, 58-71.	5.4	81
13	A field assessment of highâ€resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography. Water Resources Research, 2011, 47, .	4.2	78
14	HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrology and Earth System Sciences, 2014, 18, 4635-4655.	4.9	78
15	ls unique scaling of aquifer macrodispersivity supported by field data?. Water Resources Research, 2015, 51, 7662-7679.	4.2	76
16	Influence of natural time-dependent variations of electrical conductivity on DC resistivity measurements. Journal of Hydrology, 2004, 285, 215-232.	5.4	75
17	In Situ/Remote Sensing Integration to Assess Forest Health—A Review. Remote Sensing, 2016, 8, 471.	4.0	74
18	Catchments as reactors: a comprehensive approach for water fluxes and solute turnover. Environmental Earth Sciences, 2013, 69, 317-333.	2.7	71

#	Article	IF	CITATIONS
19	Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project. Environmental Earth Sciences, 2017, 76, 1.	2.7	67
20	Geostatistical analysis of centimeterâ€scale hydraulic conductivity variations at the MADE site. Water Resources Research, 2012, 48, .	4.2	63
21	Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sensing, 2018, 10, 1120.	4.0	63
22	Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments. Water Resources Research, 2013, 49, 2013-2024.	4.2	62
23	Finiteness of steady state plumes. Water Resources Research, 2005, 41, .	4.2	61
24	What information can we get from pumping tests?-comparing pumping test configurations using sensitivity coefficients. Journal of Hydrology, 2006, 319, 199-215.	5.4	56
25	Natural attenuation research at the contaminated megasite Zeitz. Journal of Hydrology, 2006, 328, 393-407.	5.4	56
26	Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals. Environmental Science and Pollution Research, 2014, 21, 8914-8931.	5.3	55
27	Direct Push-Technologies. , 2006, , 321-340.		55
28	Natural analogues: a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes. Environmental Earth Sciences, 2012, 67, 411-423.	2.7	54
29	Cosmicâ€ray Neutron Rover Surveys of Field Soil Moisture and the Influence of Roads. Water Resources Research, 2018, 54, 6441-6459.	4.2	53
30	Spatial characterization of the hydraulic conductivity using directâ€push injection logging. Water Resources Research, 2010, 46, .	4.2	52
31	Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network. Hydrology and Earth System Sciences, 2017, 21, 495-513.	4.9	52
32	Spatial and Temporal Dynamics of Hillslope cale Soil Moisture Patterns: Characteristic States and Transition Mechanisms. Vadose Zone Journal, 2015, 14, 1-16.	2.2	51
33	Feasibility of geoelectrical monitoring and multiphase modeling for process understanding of gaseous CO2 injection into a shallow aquifer. Environmental Earth Sciences, 2012, 67, 447-462.	2.7	48
34	Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sensing, 2019, 11, 2356.	4.0	46
35	An inversion strategy for hydraulic tomography: Coupling travel time and amplitude inversion. Journal of Hydrology, 2007, 345, 184-198.	5.4	45
36	3-D numerical evaluation of density effects on tracer tests. Journal of Contaminant Hydrology, 2005, 81, 89-105.	3.3	44

#	Article	IF	CITATIONS
37	Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment. Geoscientific Instrumentation, Methods and Data Systems, 2018, 7, 83-99.	1.6	44
38	Forward modeling of ground-penetrating radar data using digitized outcrop images and multiple scenarios of water saturation. Water Resources Research, 2001, 37, 1615-1625.	4.2	43
39	Noninvasive Monitoring of Soil Static Characteristics and Dynamic States: A Case Study Highlighting Vegetation Effects on Agricultural Land. Vadose Zone Journal, 2012, 11, vzj2011.0195.	2.2	42
40	A systematic benchmarking approach for geologic CO2 injection and storage. Environmental Earth Sciences, 2012, 67, 613-632.	2.7	41
41	Integrating surface georadar and crosshole radar tomography: A validation experiment in braided stream deposits. Geophysics, 2002, 67, 1516-1523.	2.6	40
42	Improved crosshole radar tomography by using direct and reflected arrival times. Journal of Applied Geophysics, 2001, 47, 97-105.	2.1	39
43	Highâ€resolution water content estimation from surfaceâ€based groundâ€penetrating radar reflection data by impedance inversion. Water Resources Research, 2012, 48, .	4.2	38
44	A comparison of calibration sampling schemes at the field scale. Geoderma, 2014, 232-234, 243-256.	5.1	38
45	Debates—Stochastic subsurface hydrology from theory to practice: The relevance of stochastic subsurface hydrology to practical problems of contaminant transport and remediation. What is characterization and stochastic theory good for?. Water Resources Research, 2016, 52, 9228-9234.	4.2	38
46	Three-dimensional hydrostratigraphic models from ground-penetrating radar and direct-push data. Journal of Hydrology, 2011, 398, 235-245.	5.4	37
47	Automated integration of partially colocated models: Subsurface zonation using a modified fuzzy c -means cluster analysis algorithm. Geophysics, 2010, 75, P11-P22.	2.6	36
48	Thermal tracer testing in a sedimentary aquifer: field experiment (Lauswiesen, Germany) and numerical simulation. Hydrogeology Journal, 2014, 22, 175-187.	2.1	35
49	Sustainable Intensive Thermal Use of the Shallow Subsurface—A Critical View on the Status Quo. Ground Water, 2015, 53, 356-361.	1.3	35
50	Numerical assessment of ASR recharge using small-diameter wells and surface basins. Journal of Hydrology, 2014, 517, 54-63.	5.4	33
51	A Comparison of Electrical Resistivity, Ground Penetrating Radar and Seismic Refraction Results at a River Terrace Site. Journal of Environmental and Engineering Geophysics, 2008, 13, 325-333.	0.5	32
52	Integrated analysis and interpretation of crossâ€hole P―and Sâ€wave tomograms: a case study. Near Surface Geophysics, 2009, 7, 101-109.	1.2	32
53	Estimation of Catchment cale Soil Moisture Patterns Based on Terrain Data and Sparse TDR Measurements Using a Fuzzy Câ€Means Clustering Approach. Vadose Zone Journal, 2015, 14, 1-16.	2.2	32
54	The fate of DNAPL contaminants in non-consolidated subsurface systems – Discussion on the relevance of effective source zone geometries for plume propagation. Journal of Hazardous Materials, 2019, 375, 233-240.	12.4	30

#	Article	IF	CITATIONS
55	Joint application of geophysical methods and Direct Push-soil gas surveys for the improved delineation of buried fault zones. Journal of Applied Geophysics, 2012, 82, 129-136.	2.1	29
56	A laboratory study of tracer tomography. Hydrogeology Journal, 2013, 21, 1265-1274.	2.1	29
57	Monitoring the impact of intensive shallow geothermal energy use on groundwater temperatures in a residential neighborhood. Geothermal Energy, 2019, 7, .	1.9	29
58	Evaluation of Combined Directâ€Push Methods Used for Aquifer Model Generation. Ground Water, 2009, 47, 536-546.	1.3	28
59	Analysis of Vegetation and Soil Patterns using Hyperspectral Remote Sensing, EMI, and Gammaâ€Ray Measurements. Vadose Zone Journal, 2013, 12, 1-15.	2.2	28
60	A Critical Analysis of Transverse Dispersivity Field Data. Ground Water, 2019, 57, 632-639.	1.3	27
61	Groundwater nitrification and denitrification are not always strictly aerobic and anaerobic processes, respectively: an assessment of dual-nitrate isotopic and chemical evidence in a stratified alluvial aquifer. Biogeochemistry, 2020, 147, 211-223.	3.5	26
62	Inversion strategy in crosshole radar tomography using information of data subsets. Geophysics, 2004, 69, 222-230.	2.6	25
63	Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. Journal of Contaminant Hydrology, 2009, 108, 118-133.	3.3	24
64	Identifying the influential aquifer heterogeneity factor on nitrate reduction processes by numerical simulation. Advances in Water Resources, 2017, 99, 38-52.	3.8	24
65	Derivation of siteâ€specific relationships between hydraulic parameters and <i>p</i> â€wave velocities based on hydraulic and seismic tomography. Water Resources Research, 2012, 48, .	4.2	22
66	Two-dimensional geomorphological characterization of a filled abandoned meander using geophysical methods and soil sampling. Geomorphology, 2013, 201, 335-343.	2.6	22
67	Direct push sensing in wetland (geo)archaeology: High-resolution reconstruction of buried canal structures (Fossa Carolina , Germany). Quaternary International, 2018, 473, 21-36.	1.5	21
68	Uncertainties of LAI estimation from satellite imaging due to atmospheric correction. Remote Sensing of Environment, 2014, 153, 24-39.	11.0	20
69	Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II: Geomorphology, Terrain and Surfaces. Remote Sensing, 2020, 12, 3690.	4.0	20
70	Reassessing the MADE directâ€push hydraulic conductivity data using a revised calibration procedure. Water Resources Research, 2016, 52, 8970-8985.	4.2	19
71	Investigation of the effects of fractured porous media on hydraulic tests—an experimental study at laboratory scale using single well methods. Journal of Hydrology, 2004, 297, 95-108.	5.4	18
72	Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization— a field study. Canadian Geotechnical Journal, 2012, 49, 197-206.	2.8	18

#	Article	IF	CITATIONS
73	International viewpoint and news. Environmental Earth Sciences, 2012, 66, 1279-1284.	2.7	18
74	An approach to determine equivalent solutions to the geoelectrical 2D inversion problem. Journal of Applied Geophysics, 2004, 56, 79-91.	2.1	17
75	Length of 3â€Ð mixingâ€controlled plumes for a fully penetrating contaminant source with finite width. Water Resources Research, 2011, 47, .	4.2	17
76	Direct push-technologies. , 2009, , 347-366.		17
77	Analysis of multiâ€offset GPR data: a case study in a coarseâ€grained gravel aquifer. Near Surface Geophysics, 2006, 4, 227-240.	1.2	16
78	Evaluation of Vertical Variations in Hydraulic Conductivity in Unconsolidated Sediments. Ground Water, 2012, 50, 450-456.	1.3	16
79	Ground-based Remote Sensing with Open-path Fourier- transform Infrared (OP-FTIR) Spectroscopy for Large-scale Monitoring of Greenhouse Gases. Energy Procedia, 2013, 37, 4276-4282.	1.8	16
80	Diagnostic monitoring to identify preferential near-surface structures for CO2 degassing into the atmosphere: Tools for investigations at different spatial scales validated at a natural analogue site. International Journal of Greenhouse Gas Control, 2013, 18, 285-295.	4.6	16
81	Field comparison of selected methods for vertical soil water content profiling. Journal of Hydrology, 2013, 501, 205-212.	5.4	16
82	Joint interpretation of geoelectrical and soilâ€gas measurements for monitoring CO ₂ releases at a natural analogue. Near Surface Geophysics, 2014, 12, 165-178.	1.2	16
83	Combination of electromagnetic induction and gamma spectrometry using Kâ€means clustering: A study for evaluation of site partitioning. Journal of Plant Nutrition and Soil Science, 2012, 175, 345-354.	1.9	15
84	Thermo-tectonic history of the Tethyan Himalayas deduced from the palaeomagnetic record of metacarbonates from Shiar Khola (Central Nepal). Journal of Asian Earth Sciences, 2002, 20, 203-210.	2.3	14
85	Near-surface seismic traveltime tomography using a direct-push source and surface-planted geophones. Geophysics, 2009, 74, G17-G25.	2.6	14
86	Bayesian frequency-domain blind deconvolution of ground-penetrating radar data. Journal of Applied Geophysics, 2011, 75, 615-630.	2.1	14
87	Comparison of approaches for the characterization of contamination at rural megasites. Environmental Earth Sciences, 2011, 63, 1239-1249.	2.7	14
88	Development of in-aquifer heat testing for high resolution subsurface thermal-storage capability characterisation. Journal of Hydrology, 2016, 534, 113-123.	5.4	14
89	Structural controls on the hydrogeological functioning of a floodplain. Hydrogeology Journal, 2020, 28, 2675-2696.	2.1	14
90	Neutrons on Rails: Transregional Monitoring of Soil Moisture and Snow Water Equivalent. Geophysical Research Letters, 2021, 48, .	4.0	14

#	Article		CITATIONS
91	High-resolution aquifer characterization using seismic cross-hole tomography: An evaluation experiment in a gravel delta. Journal of Hydrology, 2007, 336, 171-185.	5.4	13
92	How to chase a tracer – combining conventional salt tracer testing and direct push electrical conductivity profiling for enhanced aquifer characterization. Advances in Water Resources, 2017, 99, 60-66.	3.8	13
93	Remote Sensing of Geomorphodiversity Linked to Biodiversity—Part III: Traits, Processes and Remote Sensing Characteristics. Remote Sensing, 2022, 14, 2279.	4.0	13
94	Systematic description of direct push sensor systems: A conceptual framework for system decomposition as a basis for the optimal sensor system design. Journal of Applied Geophysics, 2015, 122, 210-217.	2.1	12
95	Gas-phase formation during thermal energy storage in near-surface aquifers: experimental and modelling results. Environmental Earth Sciences, 2016, 75, 1.	2.7	12
96	Technique, analysis routines, and application of direct push-driven in situ color logging. Environmental Earth Sciences, 2016, 75, 1.	2.7	12
97	On the importance of a coordinated site characterization for the sustainable intensive thermal use of the shallow subsurface in urban areas: a case study. Environmental Earth Sciences, 2017, 76, 1.	2.7	12
98	Geological heterogeneity: Goal-oriented simplification of structure and characterization needs. Advances in Water Resources, 2017, 109, 1-13.	3.8	12
99	Hydrogeological Modeling and Water Resources Management: Improving the Link Between Data, Prediction, and Decision Making. Water Resources Research, 2019, 55, 10340-10357.	4.2	12
100	Comparative Analysis of TMPA and IMERG Precipitation Datasets in the Arid Environment of El-Qaa Plain, Sinai. Remote Sensing, 2021, 13, 588.	4.0	12
101	Carryâ€Over Effects of the Membrane Interface Probe. Ground Water, 2012, 50, 578-584.	1.3	11
102	Non-invasive prospection techniques and direct push sensing as high-resolution validation tools in wetland geoarchaeology – Artificial water supply at a Carolingian canal in South Germany?. Journal of Applied Geophysics, 2020, 173, 103928.	2.1	11
103	Monitoring Environmental Water with Ground Albedo Neutrons from Cosmic Rays. , 2016, , .		11
104	A field comparison of BTEX mass flow rates based on integral pumping tests and point scale measurements. Journal of Contaminant Hydrology, 2011, 122, 1-15.	3.3	10
105	Relevance of Deterministic Structures for Modeling of Transport: The Lauswiesen Case Study. Ground Water, 2012, 50, 935-942.	1.3	10
106	Assessment of shallow subsurface characterisation with non-invasive geophysical methods at the intermediate hill-slope scale. Hydrology and Earth System Sciences, 2013, 17, 1297-1307.	4.9	10
107	Comparative study to evaluate three ground-based optical remote sensing techniques under field conditions by a gas tracer experiment. Environmental Earth Sciences, 2014, 72, 1435-1441.	2.7	10
108	Experimental recharge by small-diameter wells: the Pirna, Saxony, case study. Environmental Earth Sciences, 2016, 75, 1.	2.7	10

#	Article	IF	CITATIONS
109	Assessment of small-diameter shallow wells for managed aquifer recharge at a site in southern Styria, Austria. Hydrogeology Journal, 2016, 24, 2079-2091.	2.1	10
110	An Integrative Hierarchical Monitoring Approach for Detecting and Characterizing CO2 Releases. Energy Procedia, 2013, 37, 4257-4267.	1.8	8
111	Linking Geophysics and Soil Function Modeling—An Application Study for Biomass Production. Vadose Zone Journal, 2013, 12, 1-13.	2.2	8
112	Delineation of areas with different temporal behavior of soil properties at a landslide affected Alpine hillside using time-lapse electromagnetic data. Environmental Earth Sciences, 2014, 72, 1357-1366.	2.7	8
113	Estimating Soil Moisture Patterns with Remote Sensing and Terrain Data at the Small Catchment Scale. Vadose Zone Journal, 2017, 16, 1-21.	2.2	8
114	3D-Modelling of Charlemagne's Summit Canal (Southern Germany)—Merging Remote Sensing and Geoarchaeological Subsurface Data. Remote Sensing, 2019, 11, 1111.	4.0	8
115	From Dynamic Groundwater Level Measurements to Regional Aquifer Parameters— Assessing the Power of Spectral Analysis. Water Resources Research, 2022, 58, .	4.2	8
116	Digital Soil Mapping: Approaches to Integrate Sensing Techniques to the Prediction of Key Soil Properties. Vadose Zone Journal, 2013, 12, 1-4.	2.2	7
117	Comparison of Phytoscreening and Directâ€Pushâ€Based Site Investigation at a Rural Megasite Contaminated with Chlorinated Ethenes. Ground Water Monitoring and Remediation, 2015, 35, 45-56.	0.8	7
118	Adaptive observation-based subsurface conceptual site modeling framework combining interdisciplinary methodologies: a case study on advancing the understanding of a groundwater nitrate plume occurrence. Environmental Science and Pollution Research, 2019, 26, 15754-15766.	5.3	7
119	Optimization of Rain Gauge Networks for Arid Regions Based on Remote Sensing Data. Remote Sensing, 2021, 13, 4243.	4.0	7
120	iSOIL: exploring the soil as the basis for quality crop production and food security. Quality Assurance and Safety of Crops and Foods, 2009, 1, 117-120.	3.4	6
121	Delineation of fluvial sediment architecture of subalpine riverine systems using noninvasive hydrogeophysical methods. Environmental Earth Sciences, 2013, 69, 633-644.	2.7	6
122	Hydraulic profiling with the direct-push permeameter: Assessment of probe configuration and analysis methodology. Journal of Hydrology, 2013, 496, 195-204.	5.4	6
123	An integrative hierarchical monitoring approach applied at a natural analogue site to monitor CO2 degassing areas. Acta Geotechnica, 2014, 9, 127-133.	5.7	6
124	Suitability of precipitation waters as semi-artificial groundwater tracers. Journal of Hydrology, 2019, 577, 123982.	5.4	6
125	WATCHING GRASS GROW- A PILOT STUDY ON THE SUITABILITY OF PHOTOGRAMMETRIC TECHNIQUES FOR QUANTIFYING CHANGE IN ABOVEGROUND BIOMASS IN GRASSLAND EXPERIMENTS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2, 539-542.	0.2	6
126	Reliability of MASW profiling in nearâ€surface applications. Near Surface Geophysics, 2014, 12, 731-737.	1.2	5

Peter Dietrich

#	Article	IF	CITATIONS
127	Influence of source thickness on steady-state plume length. Environmental Earth Sciences, 2014, 71, 959-964.	2.7	5
128	Mobile Monitoring—Open-Source Based Optical Sensor System for Service-Oriented Turbidity and Dissolved Organic Matter Monitoring. Frontiers in Earth Science, 2019, 7, .	1.8	5
129	Directâ€Push Color Logging Images Spatial Heterogeneity of Organic Carbon in Floodplain Sediments. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005887.	3.0	5
130	A field evidence model: how to predict transport in heterogeneous aquifers at low investigation level. Hydrology and Earth System Sciences, 2021, 25, 1-15.	4.9	5
131	Research in Progress: Implementation of an Integrated Data Model for an Improved Monitoring of Environmental Processes. Lecture Notes in Business Information Processing, 2017, , 332-339.	1.0	5
132	iSOIL: An EU Project to Integrate Geophysics, Digital Soil Mapping, and Soil Science. , 2010, , 103-110.		5
133	Soil Moisture Assessment over an Alpine Hillslope with Significant Soil Heterogeneity. Vadose Zone Journal, 2013, 12, 1-12.	2.2	4
134	Innovative strategies for high resolution site characterization: application to a flood plain. Acque Sotterranee - Italian Journal of Groundwater, 2014, 3, .	0.3	4
135	Application of Monitoring Methods for Remote Detection of Atmospheric CO 2 - Concentration Levels during a Back-Production Test at the Ketzin Pilot Site. Energy Procedia, 2015, 76, 528-535.	1.8	4
136	Application of snowmelt as an active and inexpensive dual isotope groundwater tracer. Hydrogeology Journal, 2019, 27, 423-433.	2.1	4
137	How to Find Aquifer Statistics Utilizing Pumping Tests? Two Field Studies Using welltestpy. Ground Water, 2022, 60, 137-144.	1.3	4
138	MONACO—Monitoring Approach for Geological CO2 Storage Sites Using a Hierarchical Observation Concept. Advanced Technologies in Earth Sciences, 2015, , 33-57.	0.9	4
139	Lithologic inversion of tomographic data. , 1997, , .		4
140	Challenges in the Evaluation of Observational Data Trustworthiness From a Data Producers Viewpoint (FAIR+). Frontiers in Environmental Science, 2022, 9, .	3.3	4
141	Zonal cooperative inversion of partially coâ€located data sets constrained by structural <i>a priori</i> information. Near Surface Geophysics, 2012, 10, 103-116.	1.2	3
142	Are Earth Sciences lagging behind in data integration methodologies?. Environmental Earth Sciences, 2014, 71, 1997-2003.	2.7	3
143	2D probabilistic prediction of sparsely measured earth properties constrained by geophysical imaging fully accounting for tomographic reconstruction ambiguity. Environmental Earth Sciences, 2016, 75, 1.	2.7	3
144	Sediment budgeting of shortâ€ŧerm backfilling processes: The erosional collapse of a Carolingian canal construction. Earth Surface Processes and Landforms, 2020, 45, 3449-3462.	2.5	3

#	Article	IF	CITATIONS
145	A Comparison of Six Transport Models of the MADEâ€1 Experiment Implemented With Different Types of Hydraulic Data. Water Resources Research, 2021, 57, e2020WR028672.	4.2	3
			10 76 50 700

146	A hydrological tipping point and onset of	Neolithic wetland occupation	in Pestenacker (Lech)	Tj ETQq0 0 0 rgBT	Oyerlock	10 ₃ Tf 50 702
-----	---	------------------------------	-----------------------	-------------------	----------	---------------------------

147	Akupunktur für den Boden? Direct Push – mit Nadelstichen dem Untergrund auf der Spur. Grundwasser, 2012, 17, 1-1.	1.4	2
148	Determination of Hydraulic Conductivity from Grainâ€Size Distribution for Different Depositional Environments. Ground Water, 2014, 52, 823-824.	1.3	2
149	Time-domain reflectometry probing systems for the monitoring of hydrological processes in the unsaturated zone. Hydrogeology Journal, 2016, 24, 1297-1309.	2.1	2
150	Collected Rain Water as Costâ€Efficient Source for Aquifer Tracer Testing. Ground Water, 2020, 58, 125-131.	1.3	2
151	MuSaWa: Multi-Scale S-wave Tomography for Exploration and Risk Assessment of Development Sites. Advanced Technologies in Earth Sciences, 2014, , 95-114.	0.9	2
152	Characterization of fractured porous media. , 2007, , 375-392.		2
153	Combination of Near Surface Geophysical and Geotechnical Methods for Exploring Construction Sites. , 2007, , .		2
154	Application of tomographic methods for aquifer parameter identification. Zeitschrift Der Deutschen Geologischen Gesellschaft, 1995, 146, 161-166.	0.1	2
155	Characterizing Hydraulic Conductivity with the Directâ€push Permeameter. Ground Water, 2010, 48, 792-795.	1.3	1
156	WESS: an interdisciplinary approach to catchment research. Environmental Earth Sciences, 2013, 69, 313-315.	2.7	1
157	NovCare 2013 (Novel methods for subsurface characterization and monitoring: from theory to) Tj ETQq1 1 0.784	4314 rgBT 2.7	Qverlock
158	Development of an <i>in situ</i> thermal conductivity measurement system for exploration of the shallow subsurface. Measurement Science and Technology, 2016, 27, 065901.	2.6	1
159	Reply to comment by S. Neuman on "ls unique scaling of aquifer macrodispersivity supported by field data?― Water Resources Research, 2016, 52, 4203-4205.	4.2	1
160	A Triggered Depthâ€Đependent Sampling System to Overcome the Carryâ€Over Effects of the Membrane Interface Probe. Ground Water Monitoring and Remediation, 2016, 36, 54-61.	0.8	1
161	Spatially continuous probabilistic prediction of sparsely measured ground properties constrained by ill-posed tomographic imaging considering data uncertainty and resolution. Geophysics, 2017, 82, V149-V162.	2.6	1
162	Model Input Data Uncertainty and Its Potential Impact on SoilÂProperties. , 2017, , 25-52.		1

Model Input Data Uncertainty and Its Potential Impact on SoilÂProperties. , 2017, , 25-52. 162

Peter Dietrich

#	Article	IF	CITATIONS
163	Application of open-path Fourier transform infrared spectroscopy for atmospheric monitoring of a CO2 back-production experiment at the Ketzin pilot site (Germany). Environmental Monitoring and Assessment, 2018, 190, 114.	2.7	1
164	Environmental Earth Sciences Progress Report 2020 and Outlook 2021. Environmental Earth Sciences, 2021, 80, 314.	2.7	1
165	2D Probabilistic Prediction of Sparsely Measured Geotechnical Parameters Constrained by Tomographic Ambiguity and Measurements Errors. , 2016, , .		1
166	The potential of using satellite-related precipitation data sources in arid regions. , 2022, , 201-237.		1
167	The Digital Earth Smart Monitoring Concept and Tools. SpringerBriefs in Earth System Sciences, 2022, , 85-120.	0.1	1
168	Wissenstransfer und Gremienarbeit. Grundwasser, 2006, 11, 63-63.	1.4	0
169	Geophysik für die hydrogeologische Praxis. Grundwasser, 2008, 13, 67-67.	1.4	0
170	Editorial: Thematic Issue for the International Conference: novel methods for subsurface characterization and monitoring: from theory to practice (NovCare 2015). Environmental Earth Sciences, 2016, 75, 1.	2.7	0
171	High-Resolution Direct Push Sensing in Wetland Geoarchaeology—First Traces of Off-Site Construction Activities at the Fossa Carolina. Remote Sensing, 2021, 13, 4647.	4.0	0