Nathalie Andrieu-Abadie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8472916/publications.pdf

Version: 2024-02-01

92 papers 12,716 citations

94433 37 h-index 48315 88 g-index

98 all docs 98 docs citations 98 times ranked 24889 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis EMBO Journal, 1996, 15, 2417-2424.	7.8	323
4	Glutathione Regulation of Neutral Sphingomyelinase in Tumor Necrosis Factor-α-induced Cell Death. Journal of Biological Chemistry, 1998, 273, 11313-11320.	3.4	317
5	TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nature Communications, 2017, 8, 2256.	12.8	284
6	Spinal Muscular Atrophy Associated with Progressive Myoclonic Epilepsy Is Caused by Mutations in ASAH1. American Journal of Human Genetics, 2012, 91, 5-14.	6.2	250
7	Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radical Biology and Medicine, 2001, 31, 717-728.	2.9	248
8	The TNF Paradox in Cancer Progression and Immunotherapy. Frontiers in Immunology, 2019, 10, 1818.	4.8	198
9	Lâ€carnitine prevents doxorubicinâ€induced apoptosis of cardiac myocytes: role of inhibition of ceramide generation. FASEB Journal, 1999, 13, 1501-1510.	0.5	161
10	Sphingomyelin hydrolysis during apoptosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1585, 126-134.	2.4	152
11	Phospholipase A2 Is Necessary for Tumor Necrosis Factor α-induced Ceramide Generation in L929 Cells. Journal of Biological Chemistry, 1997, 272, 17196-17203.	3.4	151
12	Sphingolipids as modulators of cancer cell death: Potential therapeutic targets. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 2104-2120.	2.6	116
13	The Sphingomyelin-Ceramide Signaling Pathway Is Involved in Oxidized Low Density Lipoprotein-induced Cell Proliferation. Journal of Biological Chemistry, 1996, 271, 19251-19255.	3.4	113
14	Disruption of Sphingosine 1-Phosphate Lyase Confers Resistance to Chemotherapy and Promotes Oncogenesis through Bcl-2/Bcl-xL Upregulation. Cancer Research, 2009, 69, 9346-9353.	0.9	103
15	The natural marine anhydrophytosphingosine, Jaspine B, induces apoptosis in melanoma cells by interfering with ceramide metabolism. Biochemical Pharmacology, 2009, 78, 477-485.	4.4	99
16	Evidence against involvement of the acid lysosomal sphingomyelinase in the tumor-necrosis-factor- and interleukin-1-induced sphingomyelin cycle and cell proliferation in human fibroblasts. Biochemical Journal, 1994, 303, 341-345.	3.7	91
17	Resistance of melanoma to immune checkpoint inhibitors is overcome by targeting the sphingosine kinase-1. Nature Communications, 2020, 11, 437.	12.8	89
18	Blocking Tumor Necrosis Factor α Enhances CD8 T-cell–Dependent Immunity in Experimental Melanoma. Cancer Research, 2015, 75, 2619-2628.	0.9	81

#	Article	IF	Citations
19	Potential Role for Ceramide in Mitogen-activated Protein Kinase Activation and Proliferation of Vascular Smooth Muscle Cells Induced by Oxidized Low Density Lipoprotein. Journal of Biological Chemistry, 1998, 273, 12893-12900.	3.4	79
20	Doxorubicin induces slow ceramide accumulation and late apoptosis in cultured adult rat ventricular myocytes. Cardiovascular Research, 1999, 43, 398-407.	3.8	78
21	Glutathione Peroxidase-1 Protects from CD95-induced Apoptosis. Journal of Biological Chemistry, 2002, 277, 42867-42874.	3.4	77
22	Comparative Study of the Metabolic Pools of Sphingomyelin and Phosphatidylcholine Sensitive to Tumor Necrosis Factor. FEBS Journal, 1996, 236, 738-745.	0.2	71
23	N -Acetylcysteine Prevents the Deleterious Effect of Tumor Necrosis Factor-α on Calcium Transients and Contraction in Adult Rat Cardiomyocytes. Circulation, 2004, 109, 406-411.	1.6	71
24	Acid Ceramidase Expression Modulates the Sensitivity of A375 Melanoma Cells to Dacarbazine. Journal of Biological Chemistry, 2011, 286, 28200-28209.	3.4	71
25	Neutral sphingomyelinase inhibition participates to the benefits of N-acetylcysteine treatment in post-myocardial infarction failing heart rats. Journal of Molecular and Cellular Cardiology, 2007, 43, 344-353.	1.9	70
26	CD40 Signals Apoptosis through FAN-regulated Activation of the Sphingomyelin-Ceramide Pathway. Journal of Biological Chemistry, 1999, 274, 37251-37258.	3.4	64
27	Stressâ€induced apoptosis is not mediated by endolysosomal ceramide. FASEB Journal, 2000, 14, 36-47.	0.5	63
28	Lysosomal sphingomyelinase is not solicited for apoptosis signaling. FASEB Journal, 2001, 15, 297-299.	0.5	63
29	Lysosomes and lysosomal proteins in cancer cell death (new players of an old struggle). Biochimica Et Biophysica Acta: Reviews on Cancer, 2006, 1765, 101-125.	7.4	61
30	Ceramide in apoptosis: a revisited role. Neurochemical Research, 2002, 27, 601-607.	3.3	58
31	<i>PARKIN</i> Inactivation Links Parkinson's Disease to Melanoma. Journal of the National Cancer Institute, 2016, 108, djv340.	6.3	56
32	Apoptosis and Activation of the Sphingomyelin-Ceramide Pathway Induced by Oxidized Low Density Lipoproteins Are Not Causally Related in ECV-304 Endothelial Cells. Journal of Biological Chemistry, 1998, 273, 27389-27395.	3.4	55
33	Combining Nivolumab and Ipilimumab with Infliximab or Certolizumab in Patients with Advanced Melanoma: First Results of a Phase Ib Clinical Trial. Clinical Cancer Research, 2021, 27, 1037-1047.	7.0	55
34	Flexible and enantioselective access to jaspine B and biologically active chain-modified analogues thereof. Organic and Biomolecular Chemistry, 2010, 8, 3227.	2.8	49
35	Dual role of sphingosine kinase-1 in promoting the differentiation of dermal fibroblasts and the dissemination of melanoma cells. Oncogene, 2014, 33, 3364-3373.	5. 9	48
36	Low Temperatures and Hypertonicity Do Not Block Cytokine-induced Stimulation of the Sphingomyelin Pathway but Inhibit Nuclear Factor-l [®] B Activation. Journal of Biological Chemistry, 1995, 270, 24518-24524.	3.4	44

#	Article	IF	Citations
37	The nonlysosomal $\hat{l}^2\hat{a}$ \in glucosidase GBA2 promotes endoplasmic reticulum stress and impairs tumorigenicity of human melanoma cells. FASEB Journal, 2013, 27, 489-498.	0.5	39
38	Sphingosine kinase 1 expressed by endothelial colony-forming cells has a critical role in their revascularization activity. Cardiovascular Research, 2014, 103, 121-130.	3.8	38
39	Glucosylceramidases and malignancies in mammals. Biochimie, 2016, 125, 267-280.	2.6	36
40	Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma. Oncotarget, 2016, 7, 71873-71886.	1.8	35
41	Lysosomal acid ceramidase ASAH1 controls the transition between invasive and proliferative phenotype in melanoma cells. Oncogene, 2019, 38, 1282-1295.	5.9	34
42	Role of FAN in Tumor Necrosis Factor-α and Lipopolysaccharide-induced Interleukin-6 Secretion and Lethality in d-Galactosamine-sensitized Mice. Journal of Biological Chemistry, 2004, 279, 18648-18655.	3.4	32
43	Sphingomyelin-degrading pathways in human cells. Chemistry and Physics of Lipids, 1999, 102, 167-178.	3.2	31
44	Stress-induced apoptosis is impaired in cells with a lysosomal targeting defect but is not affected in cells synthesizing a catalytically inactive cathepsin D. Cell Death and Differentiation, 2003, 10, 1090-1100.	11.2	31
45	Phenotypic and lipidomic characterization of primary human epidermal keratinocytes exposed to simulated solar UV radiation. Journal of Dermatological Science, 2018, 92, 97-105.	1.9	31
46	Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives. Cancers, 2020, 12, 3147.	3.7	31
47	Retrovirus-Mediated Correction of the Metabolic Defect in Cultured Farber Disease Cells. Human Gene Therapy, 1999, 10, 1321-1329.	2.7	30
48	Palmitoyl protein thioesterase 1 modulates tumor necrosis factor \hat{l} ±-induced apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1250-1258.	4.1	30
49	Synthesis and biological evaluation of aziridine-containing analogs of phytosphingosine. Tetrahedron, 2011, 67, 2570-2578.	1.9	30
50	Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti–PD-1 Therapy Efficacy. Cancer Immunology Research, 2021, 9, 568-582.	3.4	30
51	Human genetic disorders of sphingolipid biosynthesis. Journal of Inherited Metabolic Disease, 2015, 38, 65-76.	3.6	29
52	Enantioselective access to a versatile 4-oxazolidinonecarbaldehyde and application to the synthesis of a cytotoxic jaspine B truncated analogue. Tetrahedron: Asymmetry, 2007, 18, 857-864.	1.8	26
53	Synthesis of Cytotoxic Aza Analogues of Jaspine B. Journal of Organic Chemistry, 2010, 75, 7920-7923.	3.2	26
54	Monogenic neurological disorders of sphingolipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1040-1051.	2.4	25

#	Article	lF	Citations
55	Targeting the Sphingosine 1-Phosphate Axis Exerts Potent Antitumor Activity in BRAFi-Resistant Melanomas. Molecular Cancer Therapeutics, 2019, 18, 289-300.	4.1	25
56	C-Alkyl 5-membered ring imino sugars as new potent cytotoxic glucosylceramide synthase inhibitors. Organic and Biomolecular Chemistry, 2006, 4, 4437-4439.	2.8	22
57	Sphingomyelin Synthase 1 (SMS1) Downregulation Is Associated With Sphingolipid Reprogramming and a Worse Prognosis in Melanoma. Frontiers in Pharmacology, 2019, 10, 443.	3. 5	22
58	Anti-TNF, a magic bullet in cancer immunotherapy?. , 2019, 7, 303.		21
59	Mannose 6-Phosphorylated Proteins Are Required for Tumor Necrosis Factor-induced Apoptosis. Journal of Biological Chemistry, 2004, 279, 52914-52923.	3.4	20
60	Lysosomal Storage Diseases: Is Impaired Apoptosis a Pathogenic Mechanism?. Neurochemical Research, 2004, 29, 871-880.	3.3	20
61	Single- and double-chained truncated jaspine B analogues: asymmetric synthesis, biological evaluation and theoretical study of an unexpected 5-endo-dig process. Tetrahedron, 2011, 67, 4253-4262.	1.9	20
62	The tumour necrosis factor-sensitive pool of sphingomyelin is resynthesized in a distinct compartment of the plasma membrane. Biochemical Journal, 1998, 333, 91-97.	3.7	18
63	Lysosomal Serine Protease CLN2 Regulates Tumor Necrosis Factor-α-mediated Apoptosis in a Bid-dependent Manner. Journal of Biological Chemistry, 2009, 284, 11507-11516.	3.4	18
64	Sphingolipid signalling: molecular basis and role in TNF- $\hat{l}\pm$ -induced cell death. Expert Reviews in Molecular Medicine, 2002, 4, 1-15.	3.9	17
65	Degradation of fluorescent and radiolabelled sphingomyelins in intact cells by a non-lysosomal pathway. Lipids and Lipid Metabolism, 1995, 1258, 277-287.	2.6	16
66	Caspase-10-Dependent Cell Death in Fas/CD95 Signalling Is Not Abrogated by Caspase Inhibitor zVAD-fmk. PLoS ONE, 2010, 5, e13638.	2.5	16
67	Sphingolipids modulate the epithelial–mesenchymal transition in cancer. Cell Death Discovery, 2015, 1, 15001.	4.7	16
68	Highly Regioselective Oxirane Ringâ€Opening of a Versatile Epoxypyrrolidine Precursor of New Iminoâ€Sugarâ€Based Sphingolipid Mimics. European Journal of Organic Chemistry, 2009, 2009, 2474-2489.	2.4	15
69	New Insights into the Role of Sphingolipid Metabolism in Melanoma. Cells, 2020, 9, 1967.	4.1	15
70	Asymmetric synthesis and cytotoxic activity of isomeric phytosphingosine derivatives. Organic and Biomolecular Chemistry, 2011, 9, 8163.	2.8	14
71	The Tricyclodecan-9-yl-xanthogenate D609 Triggers Ceramide Increase and Enhances FasL-Induced Caspase-Dependent and -Independent Cell Death in T Lymphocytes. International Journal of Molecular Sciences, 2012, 13, 8834-8852.	4.1	14
72	Are Glucosylceramide-Related Sphingolipids Involved in the Increased Risk for Cancer in Gaucher Disease Patients? Review and Hypotheses. Cancers, 2020, 12, 475.	3.7	13

#	Article	lF	CITATIONS
7 3	Targeting TNF alpha as a novel strategy to enhance CD8 ⁺ T cell-dependent immune response in melanoma?. Oncolmmunology, 2016, 5, e1068495.	4.6	12
74	Ordering of ceramide formation and caspase-9 activation in CD95L-induced Jurkat leukemia T cell apoptosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 684-693.	2.4	11
7 5	Untargeted lipidomic analysis of primary human epidermal melanocytes acutely and chronically exposed to UV radiation. Molecular Omics, 2018, 14, 170-180.	2.8	11
76	S1P: the elixir of life for naive T cells. Cellular and Molecular Immunology, 2018, 15, 657-659.	10.5	7
77	Liquid Chromatography–High Resolution Mass Spectrometry Method to Study Sphingolipid Metabolism Changes in Response to CD95L. Methods in Molecular Biology, 2017, 1557, 213-217.	0.9	6
78	Voies de signalisation de l'apoptose médiées par les sphingolipides. Société De Biologie Journal, 200 197, 217-221.	03 _{0.3}	5
79	Regulation of cell death by sphingosine 1-phosphate lyase. Autophagy, 2010, 6, 426-427.	9.1	5
80	Is active acid sphingomyelinase required for the antiproliferative response to rituximab?. Blood, 2011, 117, 3695-3696.	1.4	5
81	Alteration of Ceramide 1-O-Functionalization as a Promising Approach for Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 316-328.	1.7	5
82	Method to Measure Sphingomyelin Synthase Activity Changes in Response to CD95L. Methods in Molecular Biology, 2017, 1557, 207-212.	0.9	5
83	Basics of Sphingolipid Metabolism and Signalling. , 2015, , 1-20.		4
84	Genetic Disorders of Simple Sphingolipid Metabolism. Handbook of Experimental Pharmacology, 2013, , 127-152.	1.8	3
85	Adipocyte Extracellular Vesicles Decrease p16INK4A in Melanoma: An Additional Link between Obesity and Cancer. Journal of Investigative Dermatology, 2022, 142, 2488-2498.e8.	0.7	3
86	Dysregulation of Sphingolipid Metabolism in Melanoma: Roles in Pigmentation, Cell Survival and Tumor Progression., 2015,, 123-139.		2
87	La voie sphingomyéline-céramide dans la réponse cellulaire aux effecteurs anti-tumoraux. Medecine/Sciences, 1996, 12, 1219.	0.2	1
88	Ceramide in Apoptosis:. Molecular Biology Intelligence Unit, 2002, , 73-80.	0.2	1
89	R4: RÃ1e des sphingolipides dans les interactions mélanome-stroma. Bulletin Du Cancer, 2010, 97, S18.	1.6	0
90	Lysosomal Proteases in Cell Death. , 2009, , 647-669.		0

#	Article	IF	CITATIONS
91	Le céramide à l'origine de la cardiotoxicité de la doxorubicine Medecine/Sciences, 1999, 15, 1322.	0.2	0
92	Role of Sphingolipids in Death Receptor Signalling. Resistance To Targeted Anti-cancer Therapeutics, 2017, , 229-245.	0.1	0