Dmitri A Tenne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8472778/publications.pdf

Version: 2024-02-01

94 papers

3,423 citations

32 h-index 57 g-index

95 all docs 95
docs citations

95 times ranked 5098 citing authors

#	Article	IF	CITATIONS
1	Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy. Science, 2006, 313, 1614-1616.	12.6	295
2	Emergence of room-temperature ferroelectricity at reduced dimensions. Science, 2015, 349, 1314-1317.	12.6	259
3	Ferroelectricity in Strain-Free <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Thin Films. Physical Review Letters, 2010, 104, 197601.	7.8	233
4	Isostructural metal-insulator transition in VO ₂ . Science, 2018, 362, 1037-1040.	12.6	158
5	Enhancement of the Superconducting Transition Temperature of MgB2by a Strain-Induced Bond-Stretching Mode Softening. Physical Review Letters, 2004, 93, 147006.	7.8	139
6	Ferroelectricity in Ultrathin <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BaTiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Films: Probing the Size Effect by Ultraviolet Raman Spectroscopy. Physical Review Letters, 2009, 103, 177601.	7.8	121
7	Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 11-22.	3.6	121
8	Magnetic Structure and Ordering of Multiferroic Hexagonal <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>LuFeO</mml:mi></mml:mrow><mml:mn>3<td>.<mark>7.8</mark> .ml:mn><td>92 mml:msub></td></td></mml:mn></mml:msub></mml:mrow></mml:math>	. <mark>7.8</mark> .ml:mn> <td>92 mml:msub></td>	92 mml:msub>
9	Correlation between saturation magnetization, bandgap, and lattice volume of transition metal (M=Cr, Mn, Fe, Co, or Ni) doped Zn1â°xMxO nanoparticles. Journal of Applied Physics, 2010, 107, .	2.5	85
10	Absence of low-temperature phase transitions in epitaxialBaTiO3thin films. Physical Review B, 2004, 69,	3.2	84
11	Lattice dynamics inBaxSr1â^'xTiO3single crystals: A Raman study. Physical Review B, 2004, 70, .	3.2	84
12	Phase Transitions, Phase Coexistence, and Piezoelectric Switching Behavior in Highly Strained BiFeO ₃ Films. Advanced Materials, 2013, 25, 5561-5567.	21.0	84
13	Raman study of oxygen reduced and re-oxidized strontium titanate. Physical Review B, 2007, 76, .	3.2	82
14	Prediction of ferroelectricity in BaTiO3â^•SrTiO3 superlattices with domains. Applied Physics Letters, 2007, 91, .	3.3	74
15	Raman study ofBaxSr1â^'xTiO3films:â€,â€,Evidence for the existence of polar nanoregions. Physical Review B, 2003, 67, .	3.2	70
16	Adsorption-controlled growth of BiVO4 by molecular-beam epitaxy. APL Materials, 2013, 1, .	5.1	65
17	Defect Engineering of ZnO Nanoparticles for Bioimaging Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24933-24944.	8.0	62
18	Epitaxial CrN Thin Films with High Thermoelectric Figure of Merit. Advanced Materials, 2015, 27, 3032-3037.	21.0	59

#	Article	IF	CITATIONS
19	Single crystals of the organic semiconductor perylene tetracarboxylic dianhydride studied by Raman spectroscopy. Physical Review B, 2000, 61, 14564-14569.	3.2	57
20	Ferroelectricity in nonstoichiometric SrTiO3 films studied by ultraviolet Raman spectroscopy. Applied Physics Letters, 2010, 97, .	3.3	57
21	Raman Spectroscopy of Ferroelectric Thin Films and Superlattices. Journal of the American Ceramic Society, 2008, 91, 1820-1834.	3.8	52
22	Interfacial coherency and ferroelectricity of BaTiO3â^•SrTiO3 superlattice films. Applied Physics Letters, 2007, 91, 252904.	3.3	49
23	Growth of nanoscale BaTiO ₃ /SrTiO ₃ superlattices by molecular-beam epitaxy. Journal of Materials Research, 2008, 23, 1417-1432.	2.6	49
24	Resonant Raman scattering in GaAs/AlAs superlattices under electric fields. Physical Review B, 1992, 46, 6990-7001.	3.2	44
25	Defect induced ferromagnetism in undoped ZnO nanoparticles. Journal of Applied Physics, 2014, 115, .	2.5	43
26	Raman study of self-assembled InAs quantum dots embedded in AlAs: influence of growth temperature. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 199-202.	2.7	39
27	Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping. Nanotoxicology, 2012, 6, 440-452.	3.0	39
28	Effect of thermal strain on the ferroelectric phase transition in polycrystalline Ba0.5Sr0.5TiO3 thin films studied by Raman spectroscopy. Applied Physics Letters, 2004, 85, 4124-4126.	3.3	36
29	Lattice dynamics in BaxSr1â^'xTiO3 thin films studied by Raman spectroscopy. Journal of Applied Physics, 2004, 96, 6597-6605.	2.5	36
30	Structural development in Ge-rich Ge–S glasses. Journal of Non-Crystalline Solids, 2009, 355, 1792-1796.	3.1	35
31	Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy. Npj Quantum Materials, 2017, 2, .	5.2	34
32	Acoustic Bragg mirrors and cavities made using piezoelectric oxides. Applied Physics Letters, 2007, 90, 042909.	3.3	33
33	Influence of deposition temperature on the structure of 3,4,9,10-perylene tetracarboxylic dianhydride thin films on H-passivated silicon probed by Raman spectroscopy. Organic Electronics, 2000, 1, 49-56.	2.6	32
34	Interface phonons in InAs and AlAs quantum dot structures. Physical Review B, 2004, 70, .	3.2	32
35	Soft phonon modes in Ba0.5Sr0.5TiO3 thin films studied by Raman spectroscopy. Applied Physics Letters, 2001, 79, 3836-3838.	3.3	30
36	Structural details of Geâ€rich and silverâ€doped chalcogenide glasses for nanoionic nonvolatile memory. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 621-626.	1.8	30

#	Article	IF	Citations
37	Temperature-dependent Raman scattering of multiferroic Pb(Fe _{1/2} Nb _{1/2})O ₃ . Journal of Physics Condensed Matter, 2011, 23, 015401.	1.8	30
38	Enhanced Dye Fluorescence in Novel Dye–ZnO Nanocomposites. Advanced Functional Materials, 2010, 20, 4358-4363.	14.9	29
39	Raman study of self-assembled GaAs and AlAs islands embedded in InAs. Physical Review B, 2000, 61, 13785-13790.	3.2	27
40	Millisecond photoluminescence kinetics in a system of direct-bandgap InAs quantum dots in an AlAs matrix. JETP Letters, 2003, 77, 389-392.	1.4	26
41	Growth of organic films on passivated semiconductor surfaces: gallium arsenide versus silicon. Applied Surface Science, 2001, 175-176, 326-331.	6.1	25
42	Optical characterisation of PTCDA films grown on passivated semiconductor substrates. Applied Surface Science, 2000, 166, 387-391.	6.1	22
43	In-situ monitoring of the growth of copper phthalocyanine films on InSb by organic molecular beam deposition. Applied Surface Science, 2001, 175-176, 374-378.	6.1	21
44	Magnetism of ZnO nanoparticles: Dependence on crystallite size and surfactant coating. Journal of Applied Physics, 2011, 109, .	2.5	21
45	Structural and transport properties of epitaxial NaxCoO2 thin films. Applied Physics Letters, 2005, 87, 172104.	3.3	20
46	Detection of nanophase at the surface of HFCVD grown diamond films using surface enhanced Raman spectroscopic technique. Diamond and Related Materials, 2002, 11, 1858-1862.	3.9	19
47	Millisecond fluorescence in InAs quantum dots embedded in AlAs. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 20, 282-285.	2.7	19
48	Effect of proton irradiation on anatase TiO2 nanotube anodes for lithium-ion batteries. Journal of Materials Science, 2019, 54, 13221-13235.	3.7	19
49	Tuning the Properties of ZnO, Hematite, and Ag Nanoparticles by Adjusting the Surface Charge. Advanced Materials, 2012, 24, 1232-1237.	21.0	18
50	Raman scattering in pure and carbon-dopedMgB2films. Physical Review B, 2005, 71, .	3.2	17
51	Raman spectroscopy: a powerful tool for characterisation of Ag/3,4,9,10-perylene-tetracarboxylic-dianhydride/GaAs heterostructures. Applied Surface Science, 2001, 179, 113-117.	6.1	15
52	Oxygenâ€essisted photoinduced structural transformation in amorphous Ge–S films. Physica Status Solidi (B): Basic Research, 2009, 246, 1813-1819.	1.5	14
53	Transition metal dopants essential for producing ferromagnetism in metal oxide nanoparticles. Physical Review B, 2010, 82, .	3.2	14
54	Interface phonons in semiconductor nanostructures with quantum dots. Journal of Experimental and Theoretical Physics, 2005, 101, 554-561.	0.9	13

#	Article	IF	Citations
55	Feed gas dependence of the surface nanophase on HFCVD grown diamond films studied by surface enhanced Raman spectroscopy. Applied Surface Science, 2002, 191, 334-337.	6.1	12
56	Dynamic variations of the light-induced effects in a-Ge_xSe_100-x films: experiment and simulation. Optical Materials Express, 2015, 5, 295.	3.0	12
57	Effects of intermediate energy heavyâ€ion irradiation on the microstructure of rutile TiO ₂ single crystal. Journal of the American Ceramic Society, 2018, 101, 4357-4366.	3.8	12
58	Gamma ray induced structural effects in bare and Ag doped Ge–S thin films for sensor application. Journal of Non-Crystalline Solids, 2013, 377, 195-199.	3.1	10
59	Fluctuant magnetism in metal oxide nanocrystals capped with surfactants. Physical Review B, 2013, 88,	3.2	10
60	Raman spectroscopy of the PTCDA–inorganic semiconductor interface: evidence for charge transfer. Applied Surface Science, 2002, 190, 386-389.	6.1	9
61	Study of the sorption properties of Ge20Se80 thin films for NO2 gas sensing. Thin Solid Films, 2012, 525, 141-147.	1.8	9
62	Correlation between magnetism and electronic structure of $Zn1\hat{a}^{2}xCoxO$ nanoparticles. Journal of Applied Physics, 2013, 113, .	2.5	8
63	Novel magnetic and optical properties of $Sn1\hat{a}^2xZnxO2$ nanoparticles. Journal of Applied Physics, 2015, 117, .	2.5	8
64	Self-Assembled Islands in the (Ga,Al)As/InAs Heteroepitaxial System Studied by Raman Spectroscopy. Physica Status Solidi (B): Basic Research, 2001, 224, 25-29.	1.5	7
65	NO2 gas sorption studies of Ge33Se67 films using quartz crystal microbalance. Materials Chemistry and Physics, 2012, 137, 552-557.	4.0	7
66	Ferroelectric phase transitions in three-component short-period superlattices studied by ultraviolet Raman spectroscopy. Journal of Applied Physics, 2009, 105, 054106.	2.5	6
67	Resonant Raman Scattering by Strained and Relaxed Ge Quantum Dots. Materials Research Society Symposia Proceedings, 2002, 737, 138.	0.1	5
68	Xâ€ray radiation induced effects in selected chalcogenide glasses and CBRAM devices based on them. Physica Status Solidi (B): Basic Research, 2016, 253, 1060-1068.	1.5	5
69	Structural study of Ag-Ge-S solid electrolyte glass system for resistive radiation sensing. , 2011, , .		4
70	Structural and Material Changes in Thin Film Chalcogenide Glasses Under Ar-Ion Irradiation. IEEE Transactions on Nuclear Science, 2014, 61, 2855-2861.	2.0	4
71	Electron beam effects in Ge–Se thin films and resistance change memory devices. Emerging Materials Research, 2016, 5, 126-134.	0.7	4
72	Proton Beam Effects on Ge–Se/Ag Thin Films. Physica Status Solidi (B): Basic Research, 2018, 255, 1700453.	1.5	4

#	Article	IF	CITATIONS
73	The formation of inas quantum dotsin an aluminum oxide matrix. Technical Physics Letters, 2002, 28, 554-556.	0.7	3
74	Anisotropy of optical phonons in semiconductor superlattices: Raman scattering experiments. JETP Letters, 1998, 68, 53-58.	1.4	2
75	Lasing characteristics of lasers with a vertical cavity based on In0.2Ga0.8As quantum wells. Technical Physics Letters, 1999, 25, 775-777.	0.7	2
76	Raman study of interface phonons in InAs quantum dot structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2629-2633.	0.8	2
77	Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy. Journal of Physics: Conference Series, 2007, 92, 012160.	0.4	2
78	Growth And Magnetic Properties Of La[sub 2]NiMnO[sub 6] Epitaxial Thin Films., 2011,,.		2
79	Ion beam effect on Ge-Se chalcogenide glass films: Non-volatile memory array formation, structural changes and device performance. , 2014, , .		2
80	Tuning the Bandgap and Cytotoxicity of ZnO by Tailoring the Nanostructures. Particle and Particle Systems Characterization, 2015, 32, 596-603.	2.3	2
81	Nanotube structures: material characterization and structural analysis of Ge–Se thin films. Journal of Materials Science: Materials in Electronics, 2019, 30, 2470-2478.	2.2	2
82	Ultraviolet Raman Spectroscopy of Nanoscale Ferroelectric Thin Films and Superlattices. , 2012, , 587-624.		2
83	Forward Raman scattering in GaAs/AlAs superlattices: Study of optical phonon anisotropy. European Physical Journal B, 1999, 8, 371-376.	1.5	1
84	Raman Studies of the Soft Phonon Modes in BaxSr1â^'x.TiO3 thin Films. Materials Research Society Symposia Proceedings, 2001, 688, 1.	0.1	1
85	Confocal Raman spectroscopy and AFM for evaluation of sidewalls in type II superlattice FPAs., 2015,,.		1
86	Optical phonons in nanosize GaAs and AlAs clusters in an InAs matrix. JETP Letters, 1999, 70, 469-475.	1.4	0
87	Optical Spectroscopy during Growth of PTCDA-C60Complex Thin Films. Journal of Physical Chemistry B, 2001, 105, 12076-12081.	2.6	0
88	Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide. Materials Research Society Symposia Proceedings, 2002, 737, 144.	0.1	0
89	Formation of lnAs quantum dots in an aluminium oxide matrix by lateral selective wet oxidation. , $2003, , .$		0
90	Mechanism of Recombination in InAs Quantum Dots in Indirect Bandgap AlGaAs Matrices. AIP Conference Proceedings, 2005, , .	0.4	0

#	Article	IF	CITATIONS
91	Interface phonons of quantum dots in InAs/(Al,Ga)As heteroepitaxial system: a Raman study. AIP Conference Proceedings, 2005, , .	0.4	0
92	Multiferroic Pb(Fe[sub 1â^•2]Nb[sub 1â^•2])O[sub 3] Single Crystals: A Raman scattering study. , 2010, , .		0
93	Phase Transitions, Phase Coexistence, and Piezoelectric Switching Behavior in Highly Strained BiFeO3Films (Adv. Mater. 39/2013). Advanced Materials, 2013, 25, 5560-5560.	21.0	0
94	Tip-enhanced stimulated Raman scattering with ultra-high-aspect-ratio tips and confocal polarization Raman spectroscopy for evaluation of sidewalls in Type II superlattices FPAs., 2018,,.		0