
Ryoichi Ishimatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8472600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidic electrogenerated chemiluminescence cells using aluminum-doped zinc oxide nanoparticles as an electron injection layer. Sensors and Actuators A: Physical, 2022, 334, 113329.	4.1	7
2	Sky-blue electrogenerated chemiluminescence using anthracene derivatives as host and guest molecules. Japanese Journal of Applied Physics, 2022, 61, 060903.	1.5	4
3	Orange-Red Electrogenerated Chemiluminescence Cells Using Titanium Dioxide Nanoparticles Annealed at Different Temperatures. , 2022, , .		1
4	Green Microfluidic Electrogenerated Chemiluminescence Device Using 9,10-Diphenylanthracene as a Host Material. , 2022, , .		0
5	Microfluidic Electrogenerated Chemiluminescenece Device Using a Wide-Energy-Gap Material. , 2022, , .		0
6	Red Microfluidic Electrogenerated Chemiluminescence Device Using Tetraphenyldibenzoperiflanthene as a Guest Molecule. , 2022, , .		1
7	Covalent Hyperbranched Polymer Self-Assemblies of Three-Way Junction DNA for Single-Molecule Devices. Langmuir, 2020, 36, 10166-10174.	3.5	0
8	Enzyme-linked immunosorbent assay based on light absorption of enzymatically generated aniline oligomer: Flow injection analysis for 3-phenoxybenzoic acid with anti-3-phenoxybenzoic acid monoclonal antibody. Talanta, 2020, 218, 121102.	5.5	6
9	White electrogenerated chemiluminescence using an anthracene derivative host and fluorescent dopants for microfluidic self-emissive displays. Sensors and Actuators A: Physical, 2020, 306, 111966.	4.1	9
10	Fabrication of microfluidic electrogenerated chemiluminescence cells incorporated with titanium dioxide nanoparticles to improve luminescent performances. Applied Physics Express, 2020, 13, 107001.	2.4	7
11	Efficient Electrogenerated Chemiluminescence of Pyrrolopyrrole Aza-BODIPYs in the Near-Infrared Region with Tripropylamine: Involving Formation of S ₂ and T ₂ States. Journal of the American Chemical Society, 2019, 141, 11791-11795.	13.7	34
12	Electrogenerated Chemiluminescence of Tris(dibenzoylmethane)phenanthroline Europium(III) as a Light Source: An Application for the Detection of PO ₄ ^{3â^'} Based on the Ion Associate Formation of Phosphomolybdic Acid and Malachite Green. Analytical Sciences, 2019, 35, 799-802.	1.6	1
13	Electrogenerated Chemiluminescence and Electronic States of Several Organometallic Eu(III) and Tb(III) Complexes: Effects of the Ligands. ChemistrySelect, 2019, 4, 2815-2831.	1.5	8
14	Compact and on-demand 3D-printed optical device based on silicone optical technology (SOT) for on-site measurement: Application to flow injection analysis. Review of Scientific Instruments, 2019, 90, 104103.	1.3	1
15	Portable Analytical Detection Systems Based on Light Emitting Devices. , 2019, , .		0
16	Kinetics of Excimer Electrogenerated Chemiluminescence of Pyrene and 1-Pyrenebutyricacid 2-Ethylhexylester in Acetonitrile and an Ionic Liquid, Triethylpentylphosphonium Bis(trifluoromethanesulfonyl)imide. Journal of Physical Chemistry B, 2019, 123, 10825-10836.	2.6	7
17	Folding and Assembly of Vanilloid Receptor Secondary-Structure Peptide with Hexahistidine Linker at Nickel–Nitrilotriacetic Acid Monolayer for Capsaicin Recognition. Langmuir, 2019, 35, 2047-2054.	3.5	1
18	A wide-energy-gap naphthalene-based liquid organic semiconductor host for liquid deep-blue organic light-emitting diodes. Journal of Luminescence, 2018, 200, 19-23.	3.1	25

RYOICHI ІSHIMATSU

#	Article	IF	CITATIONS
19	An Analytical Approach for Electrogenerated Chemiluminescence Based on the Electronic States of Light Emitting Materials. Bunseki Kagaku, 2018, 67, 661-672.	0.2	Ο
20	Homogeneous Electron Transfer Reactions of Electrochemically Generated Species in Electrogenerated Chemiluminescence. Review of Polarography, 2018, 64, 3-10.	0.1	1
21	Color-tunable microfluidic electrogenerated chemiluminescence cells using Y-shaped micromixer. Japanese Journal of Applied Physics, 2018, 57, 128001.	1.5	13
22	Carbon Quantum Dots as Fluorescent Component in Peroxyoxalate Chemiluminescence for Hydrogen Peroxide Determination. Bulletin of the Chemical Society of Japan, 2018, 91, 1128-1130.	3.2	11
23	Totally synthetic microperoxidase-11. Royal Society Open Science, 2018, 5, 172311.	2.4	6
24	Deep-blue light emission with a wide-bandgap naphthalene-derivative liquid organic semiconductor host. , 2017, , .		1
25	Electrogenerated Chemiluminescence of a BODIPY Derivative with Extended Conjugation. ChemistrySelect, 2017, 2, 10531-10536.	1.5	10
26	Photophysical Properties and Efficient, Stable, Electrogenerated Chemiluminescence of Donor–Acceptor Molecules Exhibiting Thermal Spin Upconversion. Chemistry - A European Journal, 2016, 22, 4889-4898.	3.3	45
27	Flow-Injection Spectrophotometric Determination of Cysteine in Biologically Active Dietary Supplements. Journal of Analytical Chemistry, 2016, 71, 172-178.	0.9	12
28	Quenching Behavior of Thermally Activated Delayed Fluorescence from a Donor–Acceptor Molecule, 1,2,3,5-Tetrakis(carbazol-9-yl)-4,6-dicyanobenzene by O ₂ . Chemistry Letters, 2016, 45, 1183-1185.	1.3	18
29	Development of a Portable Surface Plasmon Resonance Sensor with Multi-Sensing Points Based on the Linear CCD Sensor. Analytical Sciences, 2016, 32, 673-679.	1.6	3
30	Determination of curcumin in biologically active supplements and food spices using a mesofluidic platform with fluorescence detection. Talanta, 2016, 159, 300-306.	5.5	12
31	A Miniaturized Stepwise Injection Spectrophotometric Analyzer. Analytical Sciences, 2015, 31, 529-533.	1.6	3
32	Microfluidic White Organic Light-Emitting Diode Based on Integrated Patterns of Greenish-Blue and Yellow Solvent-Free Liquid Emitters. Scientific Reports, 2015, 5, 14822.	3.3	42
33	Synthesis and Self-Assembly of His-tag Hybrid of Substrate-Binging Short Domain in Transient Receptor Potential Vanilloid Type 1 for Vanillin Sensing Application. Transactions of the Materials Research Society of Japan, 2015, 40, 175-178.	0.2	2
34	An Electrochemical Compact Diskâ€ŧype Microfluidics Platform for Use as an Enzymatic Biosensor. Electroanalysis, 2015, 27, 703-712.	2.9	25
35	Microfluidic white organic light-emitting diode based on striped fine microchannels for greenish blue and yellow liquid emitters. , 2015, , .		0
36	Fluorometric flow-immunoassay for alkylphenol polyethoxylates on a microchip containing a fluorescence detector comprised of an organic light emitting diode and an organic photodiode. Talanta, 2015, 134, 37-47.	5.5	19

RYOICHI ІSHIMATSU

#	Article	IF	CITATIONS
37	Multi-color microfluidic organic light-emitting diodes based on on-demand emitting layers of pyrene-based liquid organic semiconductors with fluorescent guest dopants. Sensors and Actuators B: Chemical, 2015, 207, 481-489.	7.8	60
38	Automated chemiluminescence immunoassay for a nonionic surfactant using a recycled spinning-pausing controlled washing procedure on a compact disc-type microfluidic platform. Talanta, 2015, 133, 100-106.	5.5	11
39	Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode. Talanta, 2015, 132, 96-105.	5.5	22
40	Electrogenerated Chemiluminescence of Donor–Acceptor Molecules with Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2014, 53, 6993-6996.	13.8	132
41	Microfluidic electrochemiluminescence (ECL) integrated flow cell for portable fluorescence detection. , 2014, , .		2
42	Potentiometric DNA sensing platform using redox-active DNA probe pair for sandwich-type dual hybridization at indicator electrode surface. Journal of Electroanalytical Chemistry, 2014, 720-721, 71-75.	3.8	2
43	Subnanomolar Detection Limit of Stripping Voltammetric Ca ²⁺ -Selective Electrode: Effects of Analyte Charge and Sample Contamination. Analytical Chemistry, 2014, 86, 7939-7946.	6.5	36
44	Multi-color microfluidic electrochemiluminescence cells. Sensors and Actuators A: Physical, 2014, 214, 225-229.	4.1	38
45	Ion Permeability of the Nuclear Pore Complex and Ion-Induced Macromolecular Permeation as Studied by Scanning Electrochemical and Fluorescence Microscopy. Analytical Chemistry, 2014, 86, 2090-2098.	6.5	41
46	Solvent Effect on Thermally Activated Delayed Fluorescence by 1,2,3,5-Tetrakis(carbazol-9-yl)-4,6-dicyanobenzene. Journal of Physical Chemistry A, 2013, 117, 5607-5612.	2.5	173
47	An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel. Talanta, 2013, 117, 139-145.	5.5	20
48	Electrochemical sensing and imaging based on ion transfer at liquid/liquid interfaces. Electrochimica Acta, 2013, 110, 836-845.	5.2	52
49	Chemiluminescence immunoassay for a nonionic surfactant using a compact disc-type microfluidic platform. Pure and Applied Chemistry, 2012, 84, 2027-2043.	1.9	4
50	A Pivot-Hinge-Style DNA Immobilization Method with Adaptable Surface Concentration Based on Oligodeoxynucleotide-Phosphorothioate Chemisorption on Gold Surfaces. Analytical Sciences, 2012, 28, 1059-1064.	1.6	3
51	Performance of an organic photodiode as an optical detector and its application to fluorometric flow-immunoassay for IgA. Talanta, 2012, 96, 132-139.	5.5	29
52	A simple and selective fluorometric assay for dopamine using a calcein blue–Fe2+ complex fluorophore. Talanta, 2012, 94, 36-43.	5.5	38
53	Quantitative Imaging of Ion Transport through Single Nanopores by High-Resolution Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2012, 134, 9856-9859.	13.7	83
54	Electrochemical Mechanism of Ion–Ionophore Recognition at Plasticized Polymer Membrane/Water Interfaces. Journal of the American Chemical Society, 2011, 133, 16300-16308.	13.7	57

RYOICHI ІSHIMATSU

#	Article	IF	CITATIONS
55	Electrochemical heparin sensing at liquid/liquid interfaces and polymeric membranes. Analytical and Bioanalytical Chemistry, 2011, 399, 571-579.	3.7	55
56	Ion-Selective Permeability of an Ultrathin Nanoporous Silicon Membrane as Probed by Scanning Electrochemical Microscopy Using Micropipet-Supported ITIES Tips. Analytical Chemistry, 2010, 82, 7127-7134.	6.5	68
57	Phase Transition of a Binary Room-Temperature Ionic Liquid Composed of Bis(pentafluoroethanesulfonyl)amide Salts of Tetraheptylammonium and <i>N</i> -Tetradecylisoquinolinium and Its Surface Properties at the Ionic Liquid Water Interface. Iournal of Physical Chemistry B. 2009. 113. 9321-9325.	2.6	18
58	Ultraslow Response of Interfacial Tension to the Change in the Phase-Boundary Potential at the Interface between Water and a Room-Temperature Ionic Liquid, Trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide. Journal of Physical Chemistry B, 2009, 113, 3273-3276.	2.6	47
59	Subnanomolar Ion Detection by Stripping Voltammetry with Solid-Supported Thin Polymeric Membrane. Analytical Chemistry, 2009, 81, 7262-7270.	6.5	57
60	Wide Polarized Potential Windows at the Interface between Water and an Ionic Liquid, Tetraheptylammonium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. Chemistry Letters, 2007, 36, 1166-1167.	1.3	15
61	Structure of the Electrical Double Layer on the Aqueous Solution Side of the Polarized Interface between Water and a Room-Temperature Ionic Liquid, Tetrahexylammonium Bis(trifluoromethylsulfonyl)imide. Langmuir, 2007, 23, 925-929.	3.5	29
62	Interfacial Ion Pairing at the Interface between Water and a Room-Temperature Ionic Liquid, N-Tetradecylisoquinolinium Bis(pentafluoroethylsulfonyl)imide. Langmuir, 2007, 23, 7608-7611.	3.5	22
63	Orientation of 1-Dodecyl-4-phenylpyridinium Ions Constituting an Ionic Liquid at the Ionic Liquid Water Interface Studied by Second Harmonic Generation. Journal of Physical Chemistry C, 2007, 111, 12461-12466.	3.1	19