
Len C Shaffrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8472226/publications.pdf Version: 2024-02-01

LENC SHAFEDEV

#	Article	IF	CITATIONS
1	Robustness of serial clustering of extratropical cyclones to the choice of tracking method. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 32204.	1.7	16
2	The Response of Northern Hemisphere Polar Lows to Climate Change in a 25Âkm Highâ€Resolution Global Climate Model. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
3	Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions. Nature Communications, 2022, 13, 1148.	12.8	22
4	What Governs the Interannual Variability of Recurving North Atlantic Tropical Cyclones?. Journal of Climate, 2022, 35, 3627-3641.	3.2	6
5	Has the risk of a 1976 northâ€west European summer drought and heatwave event increased since the 1970s because of climate change?. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 4143-4162.	2.7	6
6	How will climate change impact North Atlantic storms?. Weather, 2021, 76, 329-329.	0.7	1
7	The role of secondary cyclones and cyclone families for the North Atlantic storm track and clustering over western Europe. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1184-1205.	2.7	12
8	The Response of the Northern Hemisphere Storm Tracks and Jet Streams to Climate Change in the CMIP3, CMIP5, and CMIP6 Climate Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032701.	3.3	103
9	How Important Are Postâ€Tropical Cyclones for European Windstorm Risk?. Geophysical Research Letters, 2020, 47, e2020GL089853.	4.0	25
10	The impacts of climate change on the winter water cycle of the western Himalaya. Climate Dynamics, 2020, 55, 2287-2307.	3.8	11
11	Attribution of 2012 extreme climate events: does air-sea interaction matter?. Climate Dynamics, 2020, 55, 1225-1245.	3.8	2
12	An inter-comparison of Arctic synoptic scale storms between four global reanalysis datasets. Climate Dynamics, 2020, 54, 2777-2795.	3.8	27
13	Development, Amplification, and Decay of Atlantic/European Summer Weather Patterns Linked to Spring North Atlantic Sea Surface Temperatures. Journal of Climate, 2020, 33, 5939-5951.	3.2	16
14	Seasonal Predictability of the Winter North Atlantic Oscillation From a Jet Stream Perspective. Geophysical Research Letters, 2019, 46, 10159-10167.	4.0	27
15	Impact of air–sea coupling on Northern Hemisphere summer climate and the monsoon–desert teleconnection. Climate Dynamics, 2019, 53, 5063-5078.	3.8	3
16	From Atmospheric Dynamics to Insurance Losses: An Interdisciplinary Workshop on European Storms. Bulletin of the American Meteorological Society, 2019, 100, ES175-ES178.	3.3	6
17	Enhanced Climate Change Response of Wintertime North Atlantic Circulation, Cyclonic Activity, and Precipitation in a 25-km-Resolution Global Atmospheric Model. Journal of Climate, 2019, 32, 7763-7781.	3.2	19
18	Falling Trend of Western Disturbances in Future Climate Simulations. Journal of Climate, 2019, 32, 5037-5051.	3.2	31

LEN C SHAFFREY

#	Article	IF	CITATIONS
19	Representation of Western Disturbances in CMIP5 Models. Journal of Climate, 2019, 32, 1997-2011.	3.2	20
20	Multiple perspectives on the attribution of the extreme European summer of 2012 to climate change. Climate Dynamics, 2018, 50, 3537-3555.	3.8	15
21	Observational evidence of European summer weather patterns predictable from spring. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 59-63.	7.1	42
22	Extreme Daily Rainfall in Pakistan and North India: Scale Interactions, Mechanisms, and Precursors. Monthly Weather Review, 2018, 146, 1005-1022.	1.4	46
23	Decadal prediction of the North Atlantic subpolar gyre in the HiGEM high-resolution climate model. Climate Dynamics, 2018, 50, 921-937.	3.8	30
24	The evolution, seasonality and impacts of western disturbances. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 278-290.	2.7	115
25	Improved seasonal prediction of UK regional precipitation using atmospheric circulation. International Journal of Climatology, 2018, 38, e437.	3.5	27
26	Mean and extreme precipitation over European river basins better simulated in a 25 km AGCM. Hydrology and Earth System Sciences, 2018, 22, 3933-3950.	4.9	21
27	A critical assessment of the long-term changes in the wintertime surface Arctic Oscillation and Northern Hemisphere storminess in the ERA20C reanalysis. Environmental Research Letters, 2018, 13, 094004.	5.2	29
28	The role of serial European windstorm clustering for extreme seasonal losses as determined from multi-centennial simulations of high-resolution global climate model data. Natural Hazards and Earth System Sciences, 2018, 18, 2991-3006.	3.6	24
29	The effect of South American biomass burning aerosol emissions on the regional climate. Atmospheric Chemistry and Physics, 2018, 18, 5321-5342.	4.9	62
30	An Intercomparison of Skill and Overconfidence/Underconfidence of the Wintertime North Atlantic Oscillation in Multimodel Seasonal Forecasts. Geophysical Research Letters, 2018, 45, 7808-7817.	4.0	83
31	Decadal predictions with the HiGEM high resolution global coupled climate model: description and basic evaluation. Climate Dynamics, 2017, 48, 297-311.	3.8	16
32	Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe. Climate Dynamics, 2017, 48, 1537-1554.	3.8	86
33	Using satellite and reanalysis data to evaluate the representation of latent heating in extratropical cyclones in a climate model. Climate Dynamics, 2017, 48, 2255-2278.	3.8	27
34	Rossby wave breaking, the upper level jet, and serial clustering of extratropical cyclones in western Europe. Geophysical Research Letters, 2017, 44, 514-521.	4.0	23
35	Attribution of Forced Decadal Climate Change in Coupled and Uncoupled Ocean–Atmosphere Model Experiments. Journal of Climate, 2017, 30, 6203-6223.	3.2	40
36	The role of cyclone clustering during the stormy winter of 2013/2014. Weather, 2017, 72, 187-192.	0.7	45

LEN C SHAFFREY

#	Article	IF	CITATIONS
37	The Resolution Sensitivity of Northern Hemisphere Blocking in Four 25-km Atmospheric Global Circulation Models. Journal of Climate, 2017, 30, 337-358.	3.2	71
38	Quantifying the increasing sensitivity of power systems to climate variability. Environmental Research Letters, 2016, 11, 124025.	5.2	83
39	The response of highâ€impact blocking weather systems to climate change. Geophysical Research Letters, 2016, 43, 7250-7258.	4.0	36
40	Can climate models represent the precipitation associated with extratropical cyclones?. Climate Dynamics, 2016, 47, 679-695.	3.8	29
41	Can a climate model reproduce extreme regional precipitation events over England and Wales?. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1466-1472.	2.7	9
42	Atmospheric response in summer linked to recent Arctic sea ice loss. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2070-2076.	2.7	48
43	Serial clustering of extratropical cyclones in a multiâ€model ensemble of historical and future simulations. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 3076-3087.	2.7	22
44	Can reanalyses represent extreme precipitation over England and Wales?. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1114-1120.	2.7	9
45	Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Climate Dynamics, 2015, 45, 1727-1738.	3.8	88
46	Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Climate Dynamics, 2015, 45, 2847-2860.	3.8	58
47	A process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component. Climate Dynamics, 2015, 45, 3205-3226.	3.8	33
48	Atmospheric Impact of Arctic Sea Ice Loss in a Coupled Ocean–Atmosphere Simulation*. Journal of Climate, 2015, 28, 9606-9622.	3.2	32
49	The XWS open access catalogue of extreme European windstorms from 1979 to 2012. Natural Hazards and Earth System Sciences, 2014, 14, 2487-2501.	3.6	112
50	Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Climate Dynamics, 2014, 43, 1171-1182.	3.8	148
51	Can Polar Lows be Objectively Identified and Tracked in the ECMWF Operational Analysis and the ERA-Interim Reanalysis?. Monthly Weather Review, 2014, 142, 2596-2608.	1.4	74
52	The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution. Climate Dynamics, 2014, 42, 2455-2468.	3.8	57
53	The Ability of CMIP5 Models to Simulate North Atlantic Extratropical Cyclones*. Journal of Climate, 2013, 26, 5379-5396.	3.2	209
54	Statistical decadal predictions for sea surface temperatures: a benchmark for dynamical GCM predictions. Climate Dynamics, 2013, 41, 917-935.	3.8	25

LEN C SHAFFREY

#	Article	IF	CITATIONS
55	A Multimodel Assessment of Future Projections of North Atlantic and European Extratropical Cyclones in the CMIP5 Climate Models*. Journal of Climate, 2013, 26, 5846-5862.	3.2	271
56	Simple Uncertainty Frameworks for Selecting Weighting Schemes and Interpreting Multimodel Ensemble Climate Change Experiments. Journal of Climate, 2013, 26, 4017-4037.	3.2	58
57	The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon. Atmospheric Chemistry and Physics, 2013, 13, 1521-1534.	4.9	92
58	Examining reliability of seasonal to decadal sea surface temperature forecasts: The role of ensemble dispersion. Geophysical Research Letters, 2013, 40, 5770-5775.	4.0	38
59	How much Northern Hemisphere precipitation is associated with extratropical cyclones?. Geophysical Research Letters, 2012, 39, .	4.0	234
60	How large are projected 21st century storm track changes?. Geophysical Research Letters, 2012, 39, .	4.0	79
61	The impact of North Atlantic sea surface temperature errors on the simulation of North Atlantic European region climate. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1774-1783.	2.7	61
62	Northern Hemisphere Extratropical Cyclones in a Warming Climate in the HiGEM High-Resolution Climate Model. Journal of Climate, 2011, 24, 5336-5352.	3.2	97
63	High frequency variability of the Atlantic meridional overturning circulation. Ocean Science, 2011, 7, 471-486.	3.4	28
64	Large-scale and synoptic meteorology in the south-east Pacific during the observations campaign VOCALS-REx in austral Spring 2008. Atmospheric Chemistry and Physics, 2011, 11, 4977-5009.	4.9	32
65	Can Climate Models Capture the Structure of Extratropical Cyclones?. Journal of Climate, 2010, 23, 1621-1635.	3.2	151
66	Methods and Resources for Climate Impacts Research. Bulletin of the American Meteorological Society, 2009, 90, 836-848.	3.3	39
67	U.K. HiGEM: The New U.K. High-Resolution Global Environment Model—Model Description and Basic Evaluation. Journal of Climate, 2009, 22, 1861-1896.	3.2	214
68	Bjerknes Compensation and the Decadal Variability of the Energy Transports in a Coupled Climate Model. Journal of Climate, 2006, 19, 1167-1181.	3.2	84
69	The Interannual Variability of Energy Transports within and over the Atlantic Ocean in a Coupled Climate Model. Journal of Climate, 2004, 17, 1433-1448.	3.2	24
70	The European Climate Research Alliance (ECRA): Collaboration from bottom-up. Advances in Geosciences, 0, 46, 1-10.	12.0	1