
Jill Bargonetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8469973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting Triple Negative Breast Cancer with a Nucleus-Directed p53 Tetramerization Domain Peptide. Molecular Pharmaceutics, 2021, 18, 338-346.	4.6	6
2	Frame-shift mediated reduction of gain-of-function p53 R273H and deletion of the R273H C-terminus in breast cancer cells result in replication-stress sensitivity. Oncotarget, 2021, 12, 1128-1146.	1.8	4
3	PARP-Targeted Auger Therapy in p53 Mutant Colon Cancer Xenograft Mouse Models. Molecular Pharmaceutics, 2021, 18, 3418-3428.	4.6	16
4	Oligomerization of Mutant p53 R273H is not Required for Gain-of-Function Chromatin Associated Activities. Frontiers in Cell and Developmental Biology, 2021, 9, 772315.	3.7	3
5	Gain-of-Function Mutant p53 R273H Interacts with Replicating DNA and PARP1 in Breast Cancer. Cancer Research, 2020, 80, 394-405.	0.9	48
6	<p>MDM2-C Functions as an E3 Ubiquitin Ligase</p> . Cancer Management and Research, 2020, Volume 12, 7715-7724.	1.9	4
7	A Protein in the Yeast Saccharomyces cerevisiae Presents DNA Binding Homology to the p53 Checkpoint Protein and Tumor Suppressor. Biomolecules, 2020, 10, 417.	4.0	2
8	Gain-of-function mutant p53: history and speculation. Journal of Molecular Cell Biology, 2019, 11, 605-609.	3.3	59
9	MDM2, MDM2-C, and mutant p53 expression influence breast cancer survival in a multiethnic population. Breast Cancer Research and Treatment, 2019, 174, 257-269.	2.5	9
10	Context-dependent roles of MDMX (MDM4) and MDM2 in breast cancer proliferation and circulating tumor cells. Breast Cancer Research, 2019, 21, 5.	5.0	30
11	Contemplations on MDMX (MDM4) driving triple negative breast cancer circulating tumor cells and metastasis. Oncotarget, 2019, 10, 5007-5010.	1.8	2
12	Identification, validation, and targeting of the mutant p53-PARP-MCM chromatin axis in triple negative breast cancer. Npj Breast Cancer, 2017, 3, .	5.2	50
13	Estrogen-activated MDM2 disrupts mammary tissue architecture through a p53-independent pathway. Oncotarget, 2017, 8, 47916-47930.	1.8	23
14	Hot Spot Mutation in TP53 (R248Q) Causes Oncogenic Gain-of-Function Phenotypes in a Breast Cancer Cell Line Derived from an African American patient. International Journal of Environmental Research and Public Health, 2016, 13, 22.	2.6	17
15	Decarbamoyl mitomycin C (DMC) activates p53-independent ataxia telangiectasia and rad3 related protein (ATR) chromatin eviction. Cell Cycle, 2015, 14, 744-754.	2.6	9
16	Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate <i>VEGFR2</i> in breast cancer cells. Genes and Development, 2015, 29, 1298-1315.	5.9	115
17	Proteome-wide analysis of mutant p53 targets in breast cancer identifies new levels of gain-of-function that influence PARP, PCNA, and MCM4. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1220-9.	7.1	72
18	Homozygous mdm2 SNP309 cancer cells with compromised transcriptional elongation at p53 target genes are sensitive to induction of p53-independent cell death. Oncotarget, 2015, 6, 34573-34591.	1.8	3

Jill Bargonetti

#	Article	IF	CITATIONS
19	Splice Variants of MDM2 in Oncogenesis. Sub-Cellular Biochemistry, 2014, 85, 247-261.	2.4	15
20	C. elegans CEP-1/p53 and BEC-1 Are Involved in DNA Repair. PLoS ONE, 2014, 9, e88828.	2.5	18
21	Impedimetric Detection of Mutant p53 Biomarker-Driven Metastatic Breast Cancers under Hyposmotic Pressure. PLoS ONE, 2014, 9, e99351.	2.5	7
22	Endogenous Human MDM2-C Is Highly Expressed in Human Cancers and Functions as a p53-Independent Growth Activator. PLoS ONE, 2013, 8, e77643.	2.5	23
23	Splicing Up Mdm2 for Cancer Proteome Diversity. Genes and Cancer, 2012, 3, 311-319.	1.9	28
24	8-Amino-Adenosine Activates p53-Independent Cell Death of Metastatic Breast Cancers. Molecular Cancer Therapeutics, 2012, 11, 2495-2504.	4.1	8
25	Mutant p53 Disrupts Mammary Tissue Architecture via the Mevalonate Pathway. Cell, 2012, 148, 244-258.	28.9	736
26	Dietary downregulation of mutant p53 levels via glucose restriction. Cell Cycle, 2012, 11, 4436-4446.	2.6	111
27	A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation. Breast Cancer Research, 2011, 13, R3.	5.0	71
28	Differential Toxicity of DNA Adducts of Mitomycin C. Journal of Nucleic Acids, 2010, 2010, 1-6.	1.2	41
29	DNA Adducts of Decarbamoyl Mitomycin C Efficiently Kill Cells without Wild-Type p53 Resulting from Proteasome-Mediated Degradation of Checkpoint Protein 1. Chemical Research in Toxicology, 2010, 23, 1151-1162.	3.3	19
30	Mapping DNA Adducts of Mitomycin C and Decarbamoyl Mitomycin C in Cell Lines Using Liquid Chromatography/Electrospray Tandem Mass Spectrometry. Chemical Research in Toxicology, 2008, 21, 2370-2378.	3.3	32
31	Disruption of the p53-Mdm2 complex by Nutlin-3 reveals different cancer cell phenotypes. Ethnicity and Disease, 2008, 18, S2-1-8.	2.3	11
32	Mitomycin–DNA Adducts Induce p53-Dependent and p53-Independent Cell Death Pathways. ACS Chemical Biology, 2007, 2, 399-407.	3.4	34
33	Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene, 2006, 25, 7305-7310.	5.9	176
34	Mouse Double Minute 2 Associates with Chromatin in the Presence of p53 and Is Released to Facilitate Activation of Transcription. Cancer Research, 2006, 66, 3463-3470.	0.9	32
35	A Chromatin-associated and Transcriptionally Inactive p53-Mdm2 Complex Occurs in mdm2 SNP309 Homozygous Cells. Journal of Biological Chemistry, 2005, 280, 26776-26787.	3.4	106

Jill Bargonetti

#	Article	IF	CITATIONS
37	Phospholipase D Elevates the Level of MDM2 and Suppresses DNA Damage-Induced Increases in p53. Molecular and Cellular Biology, 2004, 24, 5677-5686.	2.3	64
38	Inhibition of Human p53 Basal Transcription by Down-regulation of Protein Kinase Cδ. Journal of Biological Chemistry, 2004, 279, 9970-9977.	3.4	57
39	A Single Nucleotide Polymorphism in the MDM2 Promoter Attenuates the p53 Tumor Suppressor Pathway and Accelerates Tumor Formation in Humans. Cell, 2004, 119, 591-602.	28.9	1,158
40	In Vivo Footprinting and DNA Affinity Chromatography for Analysis of p53 DNA Binding Ability. , 2003, 234, 151-170.		2
41	Differential Activation of p53 by the Various Adducts of Mitomycin C. Journal of Biological Chemistry, 2002, 277, 40513-40519.	3.4	50
42	Multiple roles of the tumor suppressor p53. Current Opinion in Oncology, 2002, 14, 86-91.	2.4	301
43	Camptothecin and Zeocin Can Increase p53 Levels during All Cell Cycle Stages. Biochemical and Biophysical Research Communications, 2001, 289, 998-1009.	2.1	17
44	Mutant p53 Forms a Complex with Sp1 on HIV-LTR DNA. Biochemical and Biophysical Research Communications, 2000, 279, 383-390.	2.1	55
45	Infrared spectroscopy of human tissue. V. Infrared spectroscopic studies of myeloid leukemia (ML-1) cells at different phases of the cell cycle. , 1999, 5, 219-227.		148
46	p53 binds to a constitutively nucleosome free region of the mdm2 gene. Oncogene, 1998, 16, 1171-1181.	5.9	28
47	DNA-binding Properties of the p53 Tumor Suppressor Protein. Cold Spring Harbor Symposia on Quantitative Biology, 1994, 59, 207-213.	1.1	16
48	The p53 protein is an unusually shaped tetramer that binds directly to DNA Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 3319-3323.	7.1	242
49	Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53 Genes and Development, 1992, 6, 1886-1898.	5.9	220
50	Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element Genes and Development, 1992, 6, 1143-1152.	5.9	317
51	Wild-type p53 activates transcription in vitro. Nature, 1992, 358, 83-86.	27.8	615
52	Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell, 1991, 65, 1083-1091.	28.9	404
53	Functional Consequences of the Interactions of the p53 Tumor Suppressor Protein and SV40 Large Tumor Antigen. Cold Spring Harbor Symposia on Quantitative Biology, 1991, 56, 227-235.	1.1	14
54	Initiation of rolling-circle replication in pT181 plasmid: initiator protein enhances cruciform extrusion at the origin Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 8560-8564.	7.1	106

#	Article	IF	CITATIONS
55	Staphylococcus aureus chromosomal mutations that decrease efficiency of Rep utilization in replication of pT181 and related plasmids. Journal of Bacteriology, 1989, 171, 4501-4503.	2.2	24
56	How Choreostorming Informs Thinking In Molecular Genetics And Cancer Biology. Leonardo, 0, , 1-8.	0.3	1