Long Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8469791/publications.pdf

Version: 2024-02-01

471509 677142 1,253 22 17 22 h-index citations g-index papers 23 23 23 2142 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. Cell Regeneration, 2021, 10, 11.	2.6	20
2	Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. Science China Life Sciences, 2021, 64, 1236-1280.	4.9	60
3	JNK Signaling in Drosophila Aging and Longevity. International Journal of Molecular Sciences, 2021, 22, 9649.	4.1	6
4	Regulation of Drosophila Hematopoiesis in Lymph Gland: From a Developmental Signaling Point of View. International Journal of Molecular Sciences, 2020, 21, 5246.	4.1	12
5	A Highly Selective Turn-on Fluorescent Probe for the Detection of Aluminum and Its Application to Bio-Imaging. Sensors, 2019, 19, 2423.	3.8	7
6	Endocardial Notch Signaling Promotes Cardiomyocyte Proliferation in the Regenerating Zebrafish Heart through Wnt Pathway Antagonism. Cell Reports, 2019, 26, 546-554.e5.	6.4	95
7	Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming. ELife, 2019, 8, .	6.0	30
8	PpV, acting via the JNK pathway, represses apoptosis during normal development of Drosophila wing. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 554-562.	4.9	8
9	The emerging roles of phosphatases in Hedgehog pathway. Cell Communication and Signaling, 2017, 15, 35.	6.5	19
10	Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature, 2016, 534, 700-704.	27.8	75
11	The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development (Cambridge), 2016, 143, 113-122.	2.5	36
12	Chemokine-Guided Angiogenesis Directs Coronary Vasculature Formation in Zebrafish. Developmental Cell, 2015, 33, 442-454.	7.0	117
13	Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. Developmental Cell, 2015, 34, 387-399.	7.0	217
14	Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood, 2015, 125, 1418-1426.	1.4	40
15	Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1403-1408.	7.1	216
16	Loss of Zygotic NUP107 Protein Causes Missing of Pharyngeal Skeleton and Other Tissue Defects with Impaired Nuclear Pore Function in Zebrafish Embryos. Journal of Biological Chemistry, 2012, 287, 38254-38264.	3.4	23
17	The miR-143- <i>adducin3</i> pathway is essential for cardiac chamber morphogenesis. Development (Cambridge), 2010, 137, 1887-1896.	2.5	87
18	Interruption of cenph Causes Mitotic Failure and Embryonic Death, and Its Haploinsufficiency Suppresses Cancer in Zebrafish. Journal of Biological Chemistry, 2010, 285, 27924-27934.	3.4	21

LONG ZHAO

#	Article	IF	CITATION
19	Both foxj1a and foxj1b are implicated in left–right asymmetric development in zebrafish embryos. Biochemical and Biophysical Research Communications, 2009, 380, 537-542.	2.1	29
20	A zebrafish gene trap line expresses GFP recapturing expression pattern of foxj1b. Journal of Genetics and Genomics, 2009, 36, 581-589.	3.9	25
21	Heart-specific isoform of tropomyosin4 is essential for heartbeat in zebrafish embryos. Cardiovascular Research, 2008, 80, 200-208.	3.8	43
22	Production, purification, and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella tabescens (E-20). Food and Chemical Toxicology, 2001, 39, 461-466.	3.6	65