
Darren E Richard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8468997/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-11± levels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
2	The adenoviral protein E4orf4: a probing tool to decipher mechanical stress-induced nuclear envelope remodeling in tumor cells. Cell Cycle, 2020, 19, 2963-2981.	2.6	0
3	Adenoviral protein E4orf4 interacts with the polarity protein Par3 to induce nuclear rupture and tumor cell death. Journal of Cell Biology, 2020, 219, .	5.2	9
4	Endothelin type A receptor blockade reduces vascular calcification and inflammation in rats with chronic kidney disease. Journal of Hypertension, 2017, 35, 376-384.	0.5	30
5	Selective HIF-1 Regulation under Nonhypoxic Conditions by the p42/p44 MAP Kinase Inhibitor PD184161. Molecular Pharmacology, 2017, 92, 510-518.	2.3	5
6	Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification. Kidney International, 2016, 90, 598-609.	5.2	101
7	Inflammatory Cytokines and Reactive Oxygen Species as Mediators of Chronic Kidney Disease-Related Vascular Calcification. American Journal of Hypertension, 2015, 28, 746-755.	2.0	140
8	The prolyl isomerase Pin1 regulates hypoxia-inducible transcription factor (HIF) activity. Cellular Signalling, 2014, 26, 1649-1656.	3.6	17
9	Transcriptional repression of hypoxia-inducible factor-1 (HIF-1) by the protein arginine methyltransferase PRMT1. Molecular Biology of the Cell, 2014, 25, 925-935.	2.1	31
10	Conserved Molecular Interactions within the HBO1 Acetyltransferase Complexes Regulate Cell Proliferation. Molecular and Cellular Biology, 2012, 32, 689-703.	2.3	82
11	The Werner syndrome gene product (WRN): a repressor of hypoxia-inducible factor-1 activity. Experimental Cell Research, 2012, 318, 1620-1632.	2.6	21
12	Hypoxia-inducible Factor-1 Activation in Nonhypoxic Conditions: The Essential Role of Mitochondrial-derived Reactive Oxygen Species. Molecular Biology of the Cell, 2010, 21, 3247-3257.	2.1	144
13	Tumor necrosis factor inhibitors as novel therapeutic tools for vascular remodeling diseases. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H995-H1001.	3.2	15
14	Effects of TGF-β1 on endothelial factors. Archives of Physiology and Biochemistry, 2010, 116, 50-55.	2.1	2
15	HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism. Cardiovascular Research, 2010, 88, 196-204.	3.8	75
16	Sphingosine-1-Phosphate. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 902-908.	2.4	58
17	TGFÎ ² -induced GRK2 expression attenuates AngII-regulated vascular smooth muscle cell proliferation and migration. Cellular Signalling, 2009, 21, 899-905.	3.6	27
18	(2 <i>R</i>)-[(4-Biphenylylsulfonyl)amino]- <i>N</i> -hydroxy-3-phenylpropionamide (BiPS), a Matrix Metalloprotease Inhibitor, Is a Novel and Potent Activator of Hypoxia-Inducible Factors. Molecular Pharmacology, 2008, 74, 282-288.	2.3	9

DARREN E RICHARD

#	Article	IF	CITATIONS
19	Hypoxia-inducible Factor-1α Stabilization in Nonhypoxic Conditions: Role of Oxidation and Intracellular Ascorbate Depletion. Molecular Biology of the Cell, 2008, 19, 86-94.	2.1	164
20	Differential Regulation of Hypoxia-Inducible Factor-1 through Receptor Tyrosine Kinase Transactivation in Vascular Smooth Muscle Cells. Endocrinology, 2007, 148, 4023-4031.	2.8	47
21	Transforming Growth Factor $\hat{1}^21$ Induces Hypoxia-inducible Factor-1 Stabilization through Selective Inhibition of PHD2 Expression. Journal of Biological Chemistry, 2006, 281, 24171-24181.	3.4	271
22	Arrest-defective-1 Protein, an Acetyltransferase, Does Not Alter Stability of Hypoxia-inducible Factor (HIF)-1α and Is Not Induced by Hypoxia or HIF. Journal of Biological Chemistry, 2005, 280, 31132-31140.	3.4	93
23	Hypoxia-enhanced Expression of the Proprotein Convertase Furin Is Mediated by Hypoxia-inducible Factor-1. Journal of Biological Chemistry, 2005, 280, 6561-6569.	3.4	149
24	Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. International Journal of Biochemistry and Cell Biology, 2005, 37, 535-540.	2.8	467
25	Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 11±. Blood, 2004, 103, 1124-1130.	1.4	403
26	Induction of Hypoxia-inducible Factor-1α by Transcriptional and Translational Mechanisms. Journal of Biological Chemistry, 2002, 277, 48403-48409.	3.4	352
27	Hypoxiaâ€inducible factorâ€1α (HIFâ€1α) escapes O 2 â€driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Reports, 2001, 2, 615-620.	4.5	147
28	HIF-1-dependent transcriptional activity is required for oxygen-mediated HIF-1α degradation. FEBS Letters, 2001, 491, 85-90.	2.8	125
29	Angiogenesis and G-protein-coupled receptors: signals that bridge the gap. Oncogene, 2001, 20, 1556-1562.	5.9	90
30	Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochemical Pharmacology, 2000, 60, 1171-1178.	4.4	184
31	Identification of Alternative Spliced Variants of Human Hypoxia-inducible Factor-1α. Journal of Biological Chemistry, 2000, 275, 6922-6927.	3.4	88
32	Signaling Angiogenesis via p42/p44 MAP Kinase Cascade. Annals of the New York Academy of Sciences, 2000, 902, 187-200.	3.8	119
33	Nonhypoxic Pathway Mediates the Induction of Hypoxia-inducible Factor 1α in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2000, 275, 26765-26771.	3.4	471
34	p42/p44 Mitogen-activated Protein Kinases Phosphorylate Hypoxia-inducible Factor 1α (HIF-1α) and Enhance the Transcriptional Activity of HIF-1. Journal of Biological Chemistry, 1999, 274, 32631-32637.	3.4	718
35	Angiogenesis: How a Tumor Adapts to Hypoxia. Biochemical and Biophysical Research Communications, 1999, 266, 718-722.	2.1	331
36	Bovine adrenal glomerulosa cells express such a low level of functional B2 receptors that bradykinin does not significantly increase their aldosterone production. Journal of Endocrinology, 1998, 156, 449-460.	2.6	6

DARREN E RICHARD

#	Article	IF	CITATIONS
37	Desensitization of AT1 Receptor-Mediated Cellular Responses Requires Long Term Receptor Down-Regulation in Bovine Adrenal Glomerulosa Cells*. Endocrinology, 1997, 138, 3828-3835.	2.8	18
38	Stimulation of the angiotensin II type I receptor on bovine adrenal glomerulosa cells activates a temperature-sensitive internalization-recycling pathway. Molecular and Cellular Endocrinology, 1997, 129, 209-218.	3.2	18
39	Desensitization of AT1 Receptor-Mediated Cellular Responses Requires Long Term Receptor Down-Regulation in Bovine Adrenal Glomerulosa Cells. Endocrinology, 1997, 138, 3828-3835.	2.8	7
40	Novel Cyclic Analogs of Angiotensin II with Cyclization between Positions 5 and 7:Â Conformational and Biological Implications. Journal of Medicinal Chemistry, 1996, 39, 2738-2744.	6.4	25
41	Selective interaction of chemical dyes with inositol 1,4,5-trisphosphate recognition sites. Canadian Journal of Physiology and Pharmacology, 1994, 72, 174-181.	1.4	3