Virginia Cádiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8468750/publications.pdf

Version: 2024-02-01

87

all docs

87 4,405 38
papers citations h-index

87

docs citations

h-index g-index

87 3295
times ranked citing authors

65

#	Article	IF	CITATIONS
1	Renewable polymeric materials from vegetable oils: a perspective. Materials Today, 2013, 16, 337-343.	14.2	434
2	Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current State-of-the-Art. Biomacromolecules, 2010, 11, 2825-2835.	5.4	387
3	Vegetable oils as platform chemicals for polymer synthesis. European Journal of Lipid Science and Technology, 2011, 113, 46-58.	1.5	179
4	Vegetable oilâ€based thermosetting polymers. European Journal of Lipid Science and Technology, 2010, 112, 87-96.	1.5	150
5	Polybenzoxazines: new players in the bio-based polymer arena. Polymer Chemistry, 2014, 5, 6636-6644.	3.9	124
6	Poly(ether urethane) Networks from Renewable Resources as Candidate Biomaterials:Â Synthesis and Characterization. Biomacromolecules, 2007, 8, 686-692.	5.4	115
7	Bionanocomposites from Renewable Resources:Â Epoxidized Linseed Oilâ^Polyhedral Oligomeric Silsesquioxanes Hybrid Materials. Biomacromolecules, 2006, 7, 3521-3526.	5.4	111
8	Polybenzoxazines from renewable diphenolic acid. Journal of Polymer Science Part A, 2011, 49, 1219-1227.	2.3	111
9	Novel phosphorilated flame retardant thermosets: epoxy–benzoxazine–novolac systems. Polymer, 2004, 45, 6103-6109.	3.8	103
10	Synthesis of novel benzoxazines containing glycidyl groups: A study of the crosslinking behavior. Journal of Polymer Science Part A, 2006, 44, 1529-1540.	2.3	100
11	Rapid Approach to Biobased Telechelics through Two One-Pot Thiolâ^'Ene Click Reactions. Biomacromolecules, 2010, 11, 1646-1653.	5.4	99
12	Development of a DOPO-containing benzoxazine and its high-performance flame retardant copolybenzoxazines. Polymer Degradation and Stability, 2009, 94, 1693-1699.	5.8	97
13	Renewable benzoxazine monomers from "lignin-like―naturally occurring phenolic derivatives. Journal of Polymer Science Part A, 2013, 51, 4894-4903.	2.3	88
14	Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes. Polymers, 2010, 2, 440-453.	4.5	87
15	Cone calorimetry studies of benzoxazine–epoxy systems flame retarded by chemically bonded phosphorus or silicon. Polymer Degradation and Stability, 2009, 94, 102-106.	5.8	86
16	Novel Silicon-Containing Polyurethanes from Vegetable Oils as Renewable Resources. Synthesis and Properties. Biomacromolecules, 2006, 7, 2420-2426.	5.4	85
17	A renewable approach to thermosetting resins. Reactive and Functional Polymers, 2013, 73, 381-395.	4.1	85
18	Synthesis and characterization of benzoxazine-based phenolic resins: Crosslinking study. Journal of Applied Polymer Science, 2003, 90, 470-481.	2.6	82

#	Article	IF	CITATIONS
19	Development of novel phosphorus-containing epoxy resins from renewable resources. Journal of Polymer Science Part A, 2006, 44, 6717-6727.	2.3	77
20	Polyurethane Networks from Fatty-Acid-Based Aromatic Triols:Â Synthesis and Characterization. Biomacromolecules, 2007, 8, 1858-1864.	5.4	75
21	Monomers and polymers from plant oils via click chemistry reactions. Journal of Polymer Science Part A, 2013, 51, 2111-2124.	2.3	70
22	A new route to acrylate oils: Crosslinking and properties of acrylate triglycerides from high oleic sunflower oil. Journal of Polymer Science Part A, 2009, 47, 1159-1167.	2.3	68
23	Self-foaming diphenolic acid benzoxazine. Polymer, 2012, 53, 3089-3095.	3.8	66
24	Fatty acid derived phosphorus ontaining polyesters via acyclic diene metathesis polymerization. Journal of Polymer Science Part A, 2009, 47, 5760-5771.	2.3	64
25	A green approach toward oleic―and undecylenic acidâ€derived polyurethanes. Journal of Polymer Science Part A, 2011, 49, 2407-2416.	2.3	64
26	Phosphorusâ€containing renewable polyesterâ€polyols via ADMET polymerization: Synthesis, functionalization, and radical crosslinking. Journal of Polymer Science Part A, 2010, 48, 1649-1660.	2.3	63
27	Development of novel flame-retardant thermosets based on benzoxazine-phenolic resins and a glycidyl phosphinate. Journal of Polymer Science Part A, 2004, 42, 279-289.	2.3	61
28	Flame retardant epoxy resins based on diglycidyl ether of (2,5-dihydroxyphenyl)diphenyl phosphine oxide. Journal of Polymer Science Part A, 2007, 45, 2142-2151.	2.3	51
29	Renewable polybenzoxazines based in diphenolic acid. Polymer, 2012, 53, 1617-1623.	3.8	51
30	Development of flame retardant phosphorus- and silicon-containing polybenzoxazines. Polymer Degradation and Stability, 2009, 94, 145-150.	5 . 8	49
31	A new enoneâ€containing triglyceride derivative as precursor of thermosets from renewable resources. Journal of Polymer Science Part A, 2008, 46, 6843-6850.	2.3	48
32	Advanced flame-retardant epoxy resins from phosphorus-containing diol. Journal of Polymer Science Part A, 2005, 43, 3510-3515.	2.3	46
33	Phosphorus flame retardant polybenzoxazine foams based on renewable diphenolic acid. Polymer Degradation and Stability, 2013, 98, 2617-2626.	5.8	45
34	Studies on thermal and flame retardant behaviour of mixtures of bis(m-aminophenyl)methylphosphine oxide based benzoxazine and glycidylether or benzoxazine of Bisphenol A. Polymer Degradation and Stability, 2008, 93, 2158-2165.	5.8	40
35	Adaptive bio-based polyurethane elastomers engineered by ionic hydrogen bonding interactions. European Polymer Journal, 2017, 91, 408-419.	5. 4	40
36	Synthesis and study of the thermal crosslinking of bis(<i>m</i> å€aminophenyl) methylphosphine oxide based benzoxazine. Journal of Polymer Science Part A, 2008, 46, 7162-7172.	2.3	39

#	Article	IF	CITATIONS
37	Silicon-Containing Soybean-Oil-Based Copolymers. Synthesis and Properties. Biomacromolecules, 2009, 10, 2678-2685.	5.4	39
38	Convenient and solventless preparation of pure carbon nanotube/polybenzoxazine nanocomposites with low percolation threshold and improved thermal and fire properties. Journal of Materials Chemistry A, 2014, 2, 6814-6822.	10.3	39
39	Flame retardant epoxy resins based on diglycidyl ether of isobutyl bis(hydroxypropyl)phosphine oxide. Journal of Applied Polymer Science, 2006, 99, 1367-1373.	2.6	38
40	Polyurethanes from polyols obtained by ADMET polymerization of a castor oilâ€based diene: Characterization and shape memory properties. Journal of Polymer Science Part A, 2011, 49, 518-525.	2.3	37
41	Thiol–yne reaction of alkyne-derivatized fatty acids: biobased polyols and cytocompatibility of derived polyurethanes. Polymer Chemistry, 2012, 3, 2471.	3.9	37
42	Synthesis, Characterization and Polymerization of a Novel Glycidyl Phosphinate. Macromolecular Rapid Communications, 2001, 22, 1265.	3.9	34
43	Polyacrylates Derived from Biobased Ethyl Lactate Solvent via SET-LRP. Biomacromolecules, 2019, 20, 2135-2147.	5.4	33
44	Synthesis, characterization and polymerization of isobutylbis(glycidylpropylether) phosphine oxide. Polymer, 2003, 44, 7291-7298.	3.8	32
45	Curing studies of epoxy resins with phosphorus-containing amines. Journal of Polymer Science Part A, 2006, 44, 1676-1685.	2.3	32
46	Integrating plant oils into thermally curable main-chain benzoxazine polymers via ADMET polymerization. European Polymer Journal, 2015, 67, 503-512.	5.4	32
47	Synthesis of elastomeric networks from maleated soybean-oil glycerides by thiol-ene coupling. European Polymer Journal, 2012, 48, 2040-2049.	5.4	27
48	SET-LRP of the Hydrophobic Biobased Menthyl Acrylate. Biomacromolecules, 2018, 19, 1256-1268.	5.4	27
49	Synthesis and characterization of a hybrid material based on a trimethoxysilane functionalized benzoxazine. Journal of Applied Polymer Science, 2012, 126, 1369-1376.	2.6	25
50	SET-LRP in the Neoteric Ethyl Lactate Alcohol. Biomacromolecules, 2017, 18, 3447-3456.	5.4	23
51	Photoinduced Upgrading of Lactic Acid-Based Solvents to Block Copolymer Surfactants. ACS Sustainable Chemistry and Engineering, 2020, 8, 1276-1284.	6.7	22
52	Quinolineâ€containing networks from enone and aldehyde triglyceride derivatives. Journal of Polymer Science Part A, 2010, 48, 869-878.	2.3	21
53	Synthesis of castor-oil based polyurethanes bearing alkene/alkyne groups and subsequent thiol-ene/yne post-modification. Polymer, 2016, 103, 163-170.	3.8	19
54	Phosphaâ€Michael addition to enoneâ€containing triglyceride derivatives as an efficient route to flame retardant renewable thermosets. Journal of Polymer Science Part A, 2012, 50, 3206-3213.	2.3	17

#	Article	IF	Citations
55	An efficient nonisocyanate route to polyurethanes via thiolâ€ene selfâ€addition. Journal of Polymer Science Part A, 2014, 52, 3017-3025.	2.3	17
56	SET-LRP of Bio- and Petroleum-Sourced Methacrylates in Aqueous Alcoholic Mixtures. Biomacromolecules, 2019, 20, 1816-1827.	5.4	17
57	Enhancement of Fatty Acidâ€based Polyurethanes Cytocompatibility by Nonâ€covalent Anchoring of Chondroitin Sulfate. Macromolecular Bioscience, 2012, 12, 1697-1705.	4.1	16
58	Cytocompatible polyurethanes from fatty acids through covalent immobilization of collagen. Reactive and Functional Polymers, 2013, 73, 690-697.	4.1	16
59	Flame retardant high oleic sunflower oilâ€based thermosetting resins through aza†and phosphaâ€michael additions. Journal of Polymer Science Part A, 2013, 51, 1808-1815.	2.3	16
60	Hydrolytic and enzymatic degradation studies of aliphatic 10-undecenoic acid-based polyesters. Polymer Degradation and Stability, 2018, 155, 84-94.	5.8	16
61	Closed-cell carbon foams from diphenolic acid-based polybenzoxazine. Carbon, 2015, 95, 919-929.	10.3	15
62	SET-LRP from Programmed Difunctional Initiators Encoded with Double Single-Cleavage and Double Dual-Cleavage Groups. Biomacromolecules, 2019, 20, 3200-3210.	5.4	15
63	Non-isocyanate route to biobased polyurethanes and polyureas via AB-type self-polycondensation. European Polymer Journal, 2016, 84, 837-848.	5.4	14
64	Linear and branched acetal polymers from castor oil via acetal metathesis polymerization. European Polymer Journal, 2018, 108, 348-356.	5.4	14
65	Castor oil-derived benzoxazines: Synthesis, self-metathesis and properties of the resulting thermosets. European Polymer Journal, 2016, 75, 56-66.	5.4	13
66	Study on the interaction between gelatin and polyurethanes derived from fatty acids. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1036-1046.	4.0	12
67	Polyketoesters from oleic acid. Synthesis and functionalization. Green Chemistry, 2014, 16, 1847-1853.	9.0	12
68	Polybenzoxazines with Enhanced Flame Retardancy., 2011,, 556-576.		11
69	Fully biobased triblock copolyesters from I-lactide and sulfur-containing castor oil derivatives: Preparation, oxidation and characterization. Polymer, 2015, 68, 101-110.	3.8	11
70	Cellulose nano-biocomposites from high oleic sunflower oil-derived thermosets. European Polymer Journal, 2016, 79, 109-120.	5.4	11
71	Curing reaction of glycidylthioether resins: Kinetic model study by near infrared spectroscopy and multivariate curve resolution. Journal of Polymer Science Part A, 2006, 44, 4846-4856.	2.3	10
72	Antimicrobial Polyurethane Thermosets Based on Undecylenic Acid: Synthesis and Evaluation. Macromolecular Bioscience, 2014, 14, 1170-1180.	4.1	10

#	Article	IF	Citations
73	Carboxylic Acid Ionic Modification of Castorâ€Oilâ€Based Polyurethanes Bearing Amine Groups: Chemically Tunable Physical Properties and Recyclability. Macromolecular Chemistry and Physics, 2017, 218, 1700379.	2.2	10
74	Programming Self-Assembly and Stimuli-Triggered Response of Hydrophilic Telechelic Polymers with Sequence-Encoded Hydrophobic Initiators. Macromolecules, 2020, 53, 7285-7297.	4.8	10
75	Hydroxyl functionalized renewable polyesters derived from 10-undecenoic acid: Polymer structure and post-polymerization modification. European Polymer Journal, 2018, 105, 68-78.	5.4	9
76	Biosourced All-Acrylic ABA Block Copolymers with Lactic Acid-Based Soft Phase. Molecules, 2020, 25, 5740.	3.8	9
77	Thiol-yne Reaction of Alkyne-derivatized Fatty Acids. Journal of Renewable Materials, 2013, 1, 187-194.	2.2	8
78	Fatty acid-derived $\hat{l}\pm, \hat{l}\%$ -bis-benzoxazines through hydrosilylation; curing and thermoset properties. European Polymer Journal, 2015, 69, 341-353.	5.4	8
79	pH-Responsive Micellar Nanoassemblies from Water-Soluble Telechelic Homopolymers Endcoding Acid-Labile Middle-Chain Groups in Their Hydrophobic Sequence-Defined Initiator Residue. ACS Macro Letters, 2019, 8, 1200-1208.	4.8	8
80	Positive effect of functional side groups on the structure and properties of benzoxazine networks and nanocomposites. Polymer Chemistry, 2019, 10, 5251-5264.	3.9	8
81	Dual Biochemically Breakable Drug Carriers from Programmed Telechelic Homopolymers. Biomacromolecules, 2020, 21, 4313-4325.	5.4	5
82	Oleic Acid and Undecylenic Acid as Platform Chemicals for Thermoplastic Polyurethanes. ACS Symposium Series, 2012, , 269-280.	0.5	3
83	Tailoring Polybenzoxazine Chemical Structure. , 2017, , 65-74.		3
84	Synthesis and characterization of castor oil-derived oxidation-responsive amphiphilic block copolymers: Poly(ethylene glycol)-b-poly(11 -((2-hydroxyethyl)thio)undecanoate). European Polymer Journal, 2020, 133, 109736.	5 . 4	2
85	Aza-Michael reaction with enone-modified vegetable oils: evidence of the keto–enolic equilibrium by NIR chemical imaging and evolving factor analysis. Analytical and Bioanalytical Chemistry, 2011, 399, 1975-1982.	3.7	1
86	Polybenzoxazine Materials From Renewable Diphenolic Acid., 2017,, 427-449.		1
87	Polybenzoxazine foams: Modeling mechanical properties. Journal of Cellular Plastics, 2016, 52, 657-669.	2.4	0