José M Franco-Zorrilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/846864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 2007, 39, 1033-1037.	21.4	1,845
2	The <i>Arabidopsis</i> bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses Â. Plant Cell, 2011, 23, 701-715.	6.6	906
3	DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2367-2372.	7.1	585
4	Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant Journal, 2012, 71, 699-711.	5.7	498
5	SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14947-14952.	7.1	372
6	Structural Basis for DNA Binding Specificity by the Auxin-Dependent ARF Transcription Factors. Cell, 2014, 156, 577-589.	28.9	348
7	A Mutant of the Arabidopsis Phosphate Transporter PHT1;1 Displays Enhanced Arsenic Accumulation. Plant Cell, 2007, 19, 1123-1133.	6.6	295
8	Interaction between Phosphate-Starvation, Sugar, and Cytokinin Signaling in Arabidopsis and the Roles of Cytokinin Receptors CRE1/AHK4 and AHK3. Plant Physiology, 2005, 138, 847-857.	4.8	261
9	The transcriptional control of plant responses to phosphate limitation. Journal of Experimental Botany, 2004, 55, 285-293.	4.8	232
10	Abscisic acid signaling is controlled by a <i>BRANCHED1/HD-ZIP I</i> cascade in <i>Arabidopsis</i> axillary buds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E245-E254.	7.1	211
11	Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nature Chemical Biology, 2018, 14, 480-488.	8.0	194
12	Mutations atCRE1impair cytokinin-induced repression of phosphate starvation responses inArabidopsis. Plant Journal, 2002, 32, 353-360.	5.7	165
13	Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5995-E6004.	7.1	154
14	The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in <i>Medicago truncatula</i> . Plant Physiology, 2016, 170, 194-210.	4.8	152
15	<scp>PIF</scp> 4â€induced <scp>BR</scp> synthesis is critical to diurnal and thermomorphogenic growth. EMBO Journal, 2018, 37, .	7.8	127
16	Improved proteinâ€binding microarrays for the identification of DNAâ€binding specificities of transcription factors. Plant Journal, 2011, 66, 700-711.	5.7	117
17	A Single JAZ Repressor Controls the Jasmonate Pathway in Marchantia polymorpha. Molecular Plant, 2019, 12, 185-198.	8.3	107
18	A MYB/ZML Complex Regulates Wound-Induced Lignin Genes in Maize. Plant Cell, 2015, 27, 3245-3259.	6.6	104

2

#	Article	IF	CITATIONS
19	bHLH003, bHLH013 and bHLH017 Are New Targets of JAZ Repressors Negatively Regulating JA Responses. PLoS ONE, 2014, 9, e86182.	2.5	104
20	The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. Plant Journal, 2016, 85, 134-147.	5.7	101
21	Molecular mechanisms of Evening Complex activity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6901-6909.	7.1	101
22	An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles. Plant Physiology, 2015, 168, 598-614.	4.8	98
23	Catastrophic Unbalanced Genome Rearrangements Cause Somatic Loss of Berry Color in Grapevine. Plant Physiology, 2017, 175, 786-801.	4.8	98
24	FILAMENTOUS FLOWER Is a Direct Target of JAZ3 and Modulates Responses to Jasmonate. Plant Cell, 2015, 27, 3160-3174.	6.6	93
25	Potato StCONSTANS-like1 Suppresses Storage Organ Formation by Directly Activating the FT-like StSP5G Repressor. Current Biology, 2016, 26, 872-881.	3.9	93
26	A Recently Evolved Alternative Splice Site in the BRANCHED1a Gene Controls Potato Plant Architecture. Current Biology, 2015, 25, 1799-1809.	3.9	91
27	The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato. Frontiers in Plant Science, 2017, 8, 1343.	3.6	89
28	Coordination of Chloroplast Development through the Action of the GNC and GLK Transcription Factor Families. Plant Physiology, 2018, 178, 130-147.	4.8	85
29	Jasmonate-Related MYC Transcription Factors Are Functionally Conserved in <i>Marchantia polymorpha</i> . Plant Cell, 2019, 31, 2491-2509.	6.6	73
30	early bolting in short days: An Arabidopsis Mutation That Causes Early Flowering and Partially Suppresses the Floral Phenotype of leafy. Plant Cell, 2001, 13, 1011-1024.	6.6	71
31	An Ancient COI1-Independent Function for Reactive Electrophilic Oxylipins in Thermotolerance. Current Biology, 2020, 30, 962-971.e3.	3.9	68
32	CUL3 ^{BPM} E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6205-6215.	7.1	67
33	PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. Nature Communications, 2019, 10, 4005.	12.8	65
34	The transcription factor bZIP14 regulates the TCA cycle in the diatom <i>Phaeodactylum tricornutum</i> . EMBO Journal, 2017, 36, 1559-1576.	7.8	64
35	Potato CYCLING DOF FACTORÂ1 and its IncRNA counterpart <i>StFLORE</i> link tuber development and drought response. Plant Journal, 2021, 105, 855-869.	5.7	64
36	Arabidopsis SWC4 Binds DNA and Recruits the SWR1 Complex to Modulate Histone H2A.Z Deposition at Key Regulatory Genes. Molecular Plant, 2018, 11, 815-832.	8.3	60

#	Article	IF	CITATIONS
37	ceRNAs: miRNA Target Mimic Mimics. Cell, 2011, 147, 1431-1432.	28.9	54
38	The <i>Solanum lycopersicum</i> Zinc Finger2 Cysteine-2/Histidine-2 Repressor-Like Transcription Factor Regulates Development and Tolerance to Salinity in Tomato and Arabidopsis Â. Plant Physiology, 2014, 164, 1967-1990.	4.8	54
39	Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nature Communications, 2018, 9, 5283.	12.8	54
40	Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by L-AFL proteins in Arabidopsis seed Plant Physiology, 2016, 171, pp.00034.2016.	4.8	53
41	<i>AtREM1</i> , a Member of a New Family of B3 Domain-Containing Genes, Is Preferentially Expressed in Reproductive Meristems. Plant Physiology, 2002, 128, 418-427.	4.8	52
42	The JAâ€pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. Plant Journal, 2020, 102, 138-152.	5.7	47
43	The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. Journal of Experimental Botany, 2017, 68, 4529-4543.	4.8	46
44	The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis. Development (Cambridge), 2016, 143, 1108-19.	2.5	45
45	Interallelic complementation at theArabidopsis CRE1locus uncovers independent pathways for the proliferation of vascular initials and canonical cytokinin signalling. Plant Journal, 2004, 38, 70-79.	5.7	38
46	Characterization of the cytokinin-responsive transcriptome in rice. BMC Plant Biology, 2016, 16, 260.	3.6	38
47	Identification of plant transcription factor target sequences. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 21-30.	1.9	36
48	Target Validation of Plant microRNAs. Methods in Molecular Biology, 2011, 732, 187-208.	0.9	25
49	Autoregulation of RCO by Low-Affinity Binding Modulates Cytokinin Action and Shapes Leaf Diversity. Current Biology, 2019, 29, 4183-4192.e6.	3.9	21
50	Genomeâ€wide identification of small RNA targets based on target enrichment and microarray hybridizations. Plant Journal, 2009, 59, 840-850.	5.7	18
51	DNA features beyond the transcription factor binding site specify target recognition by plant MYC2-related bHLH proteins. Plant Communications, 2021, 2, 100232.	7.7	18
52	Identification of genes specifically expressed in cauliflower reproductive meristems. Molecular characterization of BoREM1. Plant Molecular Biology, 1999, 39, 427-436.	3.9	16
53	A nonâ€ <scp>DNA</scp> â€binding activity for the <scp>ATHB</scp> 4 transcription factor in the control of vegetation proximity. New Phytologist, 2017, 216, 798-813.	7.3	14
54	PthA4 ^{AT} , a 7.5â€repeats transcription activatorâ€like (TAL) effector from <i>Xanthomonas citri</i> ssp. <i>citri</i> , triggers citrus canker resistance. Molecular Plant Pathology, 2019, 20, 1394-1407.	4.2	13

#	Article	IF	CITATIONS
55	An evolutionarily ancient fatty acid desaturase is required for the synthesis of hexadecatrienoic acid, which is the main source of the bioactive jasmonate in <i>Marchantia polymorpha</i> . New Phytologist, 2022, 233, 1401-1413.	7.3	12
56	The <scp>MYB</scp> transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from <i>Medicago truncatula</i> hairy roots. Plant Journal, 2019, 99, 637-654.	5.7	10
57	High-Throughput Analysis of Protein-DNA Binding Affinity. Methods in Molecular Biology, 2014, 1062, 697-709.	0.9	7
58	Screening of Protein–Protein and Protein–DNA Interactions Using Microarrays. Advances in Protein Chemistry and Structural Biology, 2014, 95, 231-281.	2.3	6
59	<scp>TDTHub</scp> , a web server tool for the analysis of transcription factor binding sites in plants. Plant Journal, 2022, 111, 1203-1215.	5.7	5
60	Basal differences in the transcriptional profiles of tomato leaves associated with the presence/absence of the resistance geneMi-1and changes in these differences after infestation by the whiteflyBemisia tabaci. Bulletin of Entomological Research, 2020, 110, 463-479.	1.0	1
61	DAP-Seq Identification of Transcription Factor-Binding Sites in Potato. Methods in Molecular Biology, 2021, 2354, 123-142.	0.9	1