Wei-Feng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8468495/publications.pdf

Version: 2024-02-01

71
ndex
10.46
'046
authors
,

#	Article	IF	CITATIONS
1	Clearance of methylene blue by CdS enhanced composite hydrogel materials. Environmental Technology (United Kingdom), 2022, 43, 355-366.	2.2	3
2	Superhydrophilic and polyporous nanofibrous membrane with excellent photocatalytic activity and recyclability for wastewater remediation under visible light irradiation. Chemical Engineering Journal, 2022, 427, 131685.	12.7	33
3	Molecularly-imprinted hydrogel beads <i>via</i> self-sacrificing micro-reactors as safe and selective bilirubin adsorbents. Journal of Materials Chemistry B, 2022, 10, 2534-2543.	5.8	11
4	Long-term, synergistic and high-efficient antibacterial polyacrylonitrile nanofibrous membrane prepared by "one-pot―electrospinning process. Journal of Colloid and Interface Science, 2022, 609, 718-733.	9.4	17
5	Fabrication of Functional Polycatechol Nanoparticles. ACS Macro Letters, 2022, 11, 251-256.	4.8	31
6	Mussel-Inspired and <i>In Situ</i> Polymerization-Modified Commercial Sponge for Efficient Crude Oil and Organic Solvent Adsorption. ACS Applied Materials & Interfaces, 2022, 14, 2663-2673.	8.0	21
7	Improved Cooling Performance of Hydrogel Wound Dressings via Integrating Thermal Conductivity and Heat Storage Capacity for Burn Therapy. Biomacromolecules, 2022, 23, 889-902.	5.4	26
8	Spatiotemporal Management of the Osteoimmunomodulation of Fibrous Scaffolds by Loading a Novel Amphiphilic Nanomedicine. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13991-14003.	8.0	9
9	Immune-stealth carboxymethyl chitosan-based nanomaterials for magnetic resonance imaging-guided photothermal therapy. Carbohydrate Polymers, 2022, 288, 119382.	10.2	3
10	"1+1>2― Highly efficient removal of organic pollutants by composite nanofibrous membrane based on the synergistic effect of adsorption and photocatalysis. Journal of Materials Science and Technology, 2022, 124, 76-85.	10.7	16
11	MO283: A Novel Hemoperfusion Adsorbent for Selective Removal of Circulating Histones in Septic Blood. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0
12	A rapid-triggered approach towards antibacterial hydrogel wound dressing with synergic photothermal and sterilization profiles., 2022, 138, 212873.		8
13	Duallyâ€Thermoresponsive Hydrogel with Shape Adaptability and Synergetic Bacterial Elimination in the Full Course of Wound Healing. Advanced Healthcare Materials, 2022, 11, .	7.6	23
14	Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. Biomaterials, 2021, 268, 120543.	11.4	48
15	A Hierarchical Janus Nanofibrous Membrane Combining Direct Osteogenesis and Osteoimmunomodulatory Functions for Advanced Bone Regeneration. Advanced Functional Materials, 2021, 31, 2008906.	14.9	60
16	Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria. Journal of Materials Science and Technology, 2021, 78, 131-143.	10.7	42
17	Ultra-transparent slippery surface. Smart Materials in Medicine, 2021, 2, 38-45.	6.7	10
18	Selective potassium uptake via biocompatible zeolite–polymer hybrid microbeads as promising binders for hyperkalemia. Bioactive Materials, 2021, 6, 543-558.	15.6	9

#	Article	IF	Citations
19	Advanced Surfaces by Anchoring Thin Hydrogel Layers of Functional Polymers. Chinese Journal of Polymer Science (English Edition), 2021, 39, 14-34.	3.8	12
20	Transient blood thinning during extracorporeal blood purification via the inactivation of coagulation factors by hydrogel microspheres. Nature Biomedical Engineering, 2021, 5, 1143-1156.	22.5	54
21	Facile and green approach towards biomass-derived hydrogel powders with hierarchical micro-nanostructures for ultrafast hemostasis. Journal of Materials Chemistry B, 2021, 9, 6678-6690.	5.8	18
22	Construction of dual-carbon-confined metal sulfide nanocrystals <i>via</i> bio-mimetic reactors enabling superior Fenton-like catalysis. Journal of Materials Chemistry A, 2021, 9, 22994-23010.	10.3	12
23	Circulating Histones in Sepsis: Potential Outcome Predictors and Therapeutic Targets. Frontiers in Immunology, 2021, 12, 650184.	4.8	45
24	Smart Asymmetric Hydrogel with Integrated Multiâ€Functions of NIRâ€Triggered Tunable Adhesion, Selfâ€Deformation, and Bacterial Eradication. Advanced Healthcare Materials, 2021, 10, e2100784.	7.6	74
25	Constructing porous channels in superhydrophilic polyethersulfone composite nanofibrous membranes for sustainably enhanced photocatalytic activities in wastewater remediation. Composites Science and Technology, 2021, 214, 108993.	7.8	17
26	A polyethersulfone composite ultrafiltration membrane with the in-situ generation of CdS nanoparticles for the effective removal of organic pollutants and photocatalytic self-cleaning. Journal of Membrane Science, 2021, 638, 119715.	8.2	26
27	Mussel-inspired ultra-stretchable, universally sticky, and highly conductive nanocomposite hydrogels. Journal of Materials Chemistry B, 2021, 9, 2221-2232.	5.8	30
28	Accelerated Bone Regeneration by MOF Modified Multifunctional Membranes through Enhancement of Osteogenic and Angiogenic Performance. Advanced Healthcare Materials, 2021, 10, e2001369.	7.6	67
29	Advances in the Development of Biomaterials for Endotoxin Adsorption in Sepsis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 699418.	4.1	4
30	Hemocompatibility enhancement of polyethersulfone membranes: Strategies and challenges. , 2021, 1, 100013 .		11
31	A chitosan modified asymmetric small-diameter vascular graft with anti-thrombotic and anti-bacterial functions for vascular tissue engineering. Journal of Materials Chemistry B, 2020, 8, 568-577.	5.8	44
32	Precipitated droplets in-situ cross-linking polymerization towards hydrogel beads for ultrahigh removal of positively charged toxins. Separation and Purification Technology, 2020, 238, 116497.	7.9	19
33	Nonadherent Zwitterionic Composite Nanofibrous Membrane with a Halloysite Nanocarrier for Sustained Wound Anti-Infection and Cutaneous Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 621-633.	5.2	17
34	Rationally designed magnetic poly(catechol-hexanediamine) particles for bacteria removal and on-demand biofilm eradication. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110728.	5.0	13
35	Immobilization of heparin-mimetic biomacromolecules on Fe3O4 nanoparticles as magnetic anticoagulant via mussel-inspired coating. Materials Science and Engineering C, 2020, 109, 110516.	7.3	16
36	Urease immobilized GO core@shell heparin-mimicking polymer beads with safe and effective urea removal for blood purification. International Journal of Biological Macromolecules, 2020, 156, 1503-1511.	7.5	10

#	Article	IF	CITATIONS
37	Precipitated droplets in-situ cross-linking polymerization and its applications. Polymer Testing, 2020, 91, 106756.	4.8	6
38	Dual-functional polyethersulfone composite nanofibrous membranes with synergistic adsorption and photocatalytic degradation for organic dyes. Composites Science and Technology, 2020, 199, 108353.	7.8	54
39	Fabrication of Hemocompatible Polyethersulfone Derivatives by One-Step Radiation-Induced Homogeneous Polymerization. Materials Today Communications, 2020, 25, 101548.	1.9	6
40	Fast and environmental-friendly approach towards uniform hydrogel particles with ultrahigh and selective removal of anionic dyes. Journal of Environmental Chemical Engineering, 2020, 8, 104352.	6.7	13
41	Metalâ€Phenolic Networks Nanoplatform to Mimic Antioxidant Defense System for Broadâ€Spectrum Radical Eliminating and Endotoxemia Treatment. Advanced Functional Materials, 2020, 30, 2002234.	14.9	74
42	Anticoagulant chitosan-kappa-carrageenan composite hydrogel sorbent for simultaneous endotoxin and bacteria cleansing in septic blood. Carbohydrate Polymers, 2020, 243, 116470.	10.2	37
43	Hemocompatible magnetic particles with broad-spectrum bacteria capture capability for blood purification. Journal of Colloid and Interface Science, 2020, 576, 1-9.	9.4	27
44	Ligand Diffusion Enables Forceâ€Independent Cell Adhesion via Activating α5β1 Integrin and Initiating Rac and RhoA Signaling. Advanced Materials, 2020, 32, e2002566.	21.0	50
45	Functionalized polyurethane sponge based on dopamine derivative for facile and instantaneous clean-up of cationic dyes in a large scale. Journal of Hazardous Materials, 2020, 400, 123203.	12.4	28
46	Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polymer Chemistry, 2020, 11, 4355-4381.	3.9	32
47	Biocompatible In Situ Polymerization of Multipurpose Polyacrylamide-Based Hydrogels on Skin via Silver Ion Catalyzation. ACS Applied Materials & Silver Ion Catalyzation. ACS Applied Materials & Silver Ion Catalyzation.	8.0	36
48	Design of poly ionic liquids modified cotton fabric with ion species-triggered bidirectional oil-water separation performance. Journal of Hazardous Materials, 2020, 400, 123163.	12.4	28
49	Green Fabrication of Tannic Acid-Inspired Magnetic Composite Nanoparticles toward Cationic Dye Capture and Selective Degradation. ACS Omega, 2020, 5, 6566-6575.	3.5	11
50	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
51	Metal–Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13698-13708.	8.0	129
52	Amides and Heparinâ€Like Polymer Coâ€Functionalized Graphene Oxide Based Core @ Polyethersulfone Based Shell Beads for Bilirubin Adsorption. Macromolecular Bioscience, 2020, 20, e2000153.	4.1	11
53	Self-Anticoagulant Nanocomposite Spheres for the Removal of Bilirubin from Whole Blood: A Step toward a Wearable Artificial Liver. Biomacromolecules, 2020, 21, 1762-1775.	5.4	38
54	Construction of Kevlar nanofiber/graphene oxide composite beads as safe, self-anticoagulant, and highly efficient hemoperfusion adsorbents. Journal of Materials Chemistry B, 2020, 8, 1960-1970.	5.8	21

#	Article	IF	CITATIONS
55	A facile and high-efficiency strategy towards instantaneous clean-up of positively-charged microcontaminants by regenerative carboxylated sponge. Chemical Engineering Journal, 2020, 388, 124301.	12.7	12
56	A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation. Science of the Total Environment, 2020, 729, 138876.	8.0	40
57	Layerâ€byâ€Layer Assembly for Surface Tethering of Thinâ€Hydrogel Films: Design Strategies and Applications. Chemical Record, 2020, 20, 857-881.	5.8	22
58	Urease-Immobilized Magnetic Graphene Oxide as a Safe and Effective Urea Removal Recyclable Nanocatalyst for Blood Purification. Industrial & Engineering Chemistry Research, 2020, 59, 8955-8964.	3.7	16
59	Vapor induced phase separation towards anion-/near-infrared-responsive pore channels for switchable anti-fouling membranes. Journal of Materials Chemistry A, 2020, 8, 8934-8948.	10.3	24
60	Hierarchically multi-functionalized graded membrane with enhanced bone regeneration and self-defensive antibacterial characteristics for guided bone regeneration. Chemical Engineering Journal, 2020, 398, 125542.	12.7	34
61	Codeposition of Polydopamine and Zwitterionic Polymer on Membrane Surface with Enhanced Stability and Antibiofouling Property. Langmuir, 2019, 35, 1430-1439.	3.5	70
62	lonic-Strength Responsive Zwitterionic Copolymer Hydrogels with Tunable Swelling and Adsorption Behaviors. Langmuir, 2019, 35, 1146-1155.	3.5	81
63	Functionalized polyethersulfone nanofibrous membranes with ultra-high adsorption capacity for organic dyes by one-step electrospinning. Journal of Colloid and Interface Science, 2019, 533, 526-538.	9.4	75
64	Intelligent antibacterial surface based on ionic liquid molecular brushes for bacterial killing and release. Journal of Materials Chemistry B, 2019, 7, 5520-5527.	5.8	16
65	Engineering antimicrobial and biocompatible electrospun PLGA fibrous membranes by irradiation grafting polyvinylpyrrolidone and periodate. Colloids and Surfaces B: Biointerfaces, 2019, 181, 918-926.	5.0	19
66	Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal. Journal of Colloid and Interface Science, 2019, 556, 492-502.	9.4	43
67	A bioinspired strategy towards super-adsorbent hydrogel spheres <i>via</i> self-sacrificing micro-reactors for robust wastewater remediation. Journal of Materials Chemistry A, 2019, 7, 21386-21403.	10.3	46
68	Tazarotene Released from Aligned Electrospun Membrane Facilitates Cutaneous Wound Healing by Promoting Angiogenesis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36141-36153.	8.0	61
69	Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. Journal of Materials Chemistry B, 2019, 7, 1186-1208.	5.8	93
70	Sizeâ€Transformable Metal–Organic Framework–Derived Nanocarbons for Localized Chemoâ€Photothermal Bacterial Ablation and Wound Disinfection. Advanced Functional Materials, 2019, 29, 1900143.	14.9	104
71	Engineering of Tannic Acid Inspired Antifouling and Antibacterial Membranes through Co-deposition of Zwitterionic Polymers and Ag Nanoparticles. Industrial & Engineering Chemistry Research, 2019, 58, 11689-11697.	3.7	52
72	Three-Dimensional Graphene Oxide Skeleton Guided Poly(acrylic Acid) Composite Hydrogel Particles with Hierarchical Pore Structure for Hemoperfusion. ACS Biomaterials Science and Engineering, 2019, 5, 3987-4001.	5.2	16

#	Article	IF	Citations
73	General Method for Synthesizing Transition-Metal Phosphide/N-Doped Carbon Nanomaterials for Hydrogen Evolution. Langmuir, 2019, 35, 9161-9168.	3.5	17
74	Facile synthesis of a triptyceneâ€based porous organic polymer with a high efficiency and recyclable adsorption for organic dyes. Journal of Applied Polymer Science, 2019, 136, 47987.	2.6	25
75	Metal–Organic-Framework-Derived 2D Carbon Nanosheets for Localized Multiple Bacterial Eradication and Augmented Anti-infective Therapy. Nano Letters, 2019, 19, 5885-5896.	9.1	133
76	Chondroitin-analogue decorated magnetic nanoparticles $\langle i \rangle via \langle i \rangle$ a click reaction for selective adsorption of low-density lipoprotein. Polymer Chemistry, 2019, 10, 2540-2550.	3.9	6
77	Surface engineering of low-fouling and hemocompatible polyethersulfone membranes via in-situ ring-openingâ€,reaction. Journal of Membrane Science, 2019, 581, 373-382.	8.2	36
78	Recent progresses in graphene based bio-functional nanostructures for advanced biological and cellular interfaces. Nano Today, 2019, 26, 57-97.	11.9	58
79	Safe and Effective Removal of Urea by Urease-Immobilized, Carboxyl-Functionalized PES Beads with Good Reusability and Storage Stability. ACS Omega, 2019, 4, 2853-2862.	3.5	23
80	Biomimetic phosphorylcholine strategy to improve the hemocompatibility of pH-responsive micelles containing tertiary amino groups. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110545.	5.0	12
81	Reinforcement of Polycaprolactone/Chitosan with Nanoclay and Controlled Release of Curcumin for Wound Dressing. ACS Omega, 2019, 4, 22292-22301.	3.5	43
82	Multifunctional negatively-charged poly (ether sulfone) nanofibrous membrane for water remediation. Journal of Colloid and Interface Science, 2019, 538, 648-659.	9.4	33
83	In vitro and in vivo anticoagulant activity of heparin-like biomacromolecules and the mechanism analysis for heparin-mimicking activity. International Journal of Biological Macromolecules, 2019, 122, 784-792.	7.5	30
84	A green approach towards functional hydrogel particles from synthetic polymers via spherical capsule mini-reactors. Chemical Engineering Journal, 2019, 359, 1360-1371.	12.7	31
85	A new approach for membrane modification based on electrochemically mediated living polymerization and self-assembly of N-tert-butyl amide- and $\hat{1}^2$ -cyclodextrin-involved macromolecules for blood purification. Materials Science and Engineering C, 2019, 95, 122-133.	7.3	16
86	A template-hatched method towards poly(acrylic acid) hydrogel spheres with ultrahigh ion exchange capacity and robust adsorption of environmental toxins. Journal of Industrial and Engineering Chemistry, 2019, 69, 422-431.	5.8	22
87	Multifunctionalized polyethersulfone membranes with networked submicrogels to improve antifouling property, antibacterial adhesion and blood compatibility. Materials Science and Engineering C, 2019, 96, 402-411.	7.3	14
88	Facile fabrication of gelatin and polycaprolactone based bilayered membranes via spin coating method with antibacterial and cyto-compatible properties. International Journal of Biological Macromolecules, 2019, 124, 699-707.	7.5	15
89	Biocompatible graphene-based nanoagent with NIR and magnetism dual-responses for effective bacterial killing and removal. Colloids and Surfaces B: Biointerfaces, 2019, 173, 266-275.	5.0	35
90	lonic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties. New Journal of Chemistry, 2018, 42, 5323-5333.	2.8	19

#	Article	IF	CITATIONS
91	Thermoresponsive Antibacterial Surfaces Switching from Bacterial Adhesion to Bacterial Repulsion. Macromolecular Materials and Engineering, 2018, 303, 1700590.	3.6	16
92	Reinforced-Concrete Structured Hydrogel Microspheres with Ultrahigh Mechanical Strength, Restricted Water Uptake, and Superior Adsorption Capacity. ACS Sustainable Chemistry and Engineering, 2018, 6, 5950-5958.	6.7	43
93	Rationally designed magnetic nanoparticles as anticoagulants for blood purification. Colloids and Surfaces B: Biointerfaces, 2018, 164, 316-323.	5.0	21
94	Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. Carbohydrate Polymers, 2018, 187, 85-93.	10.2	84
95	Facile Fabrication of Musselâ€Inspired Multifunctional Polymeric Membranes with Remarkable Anticoagulant, Antifouling, and Antibacterial Properties. Macromolecular Materials and Engineering, 2018, 303, 1700378.	3.6	8
96	Design of Carrageenan-Based Heparin-Mimetic Gel Beads as Self-Anticoagulant Hemoperfusion Adsorbents. Biomacromolecules, 2018, 19, 1966-1978.	5.4	70
97	Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface. Chemical Engineering Journal, 2018, 337, 122-132.	12.7	131
98	Macromol. Mater. Eng. 3/2018. Macromolecular Materials and Engineering, 2018, 303, 1870011.	3.6	0
99	Integrating zwitterionic polymer and Ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly. Journal of Colloid and Interface Science, 2018, 510, 308-317.	9.4	63
100	Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property. Materials Science and Engineering C, 2018, 84, 52-59.	7.3	22
101	One-step electrospinning of negatively-charged polyethersulfone nanofibrous membranes for selective removal of cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 179-188.	5.3	20
102	Bilayered Antimicrobial Nanofiber Membranes for Wound Dressings via <i>in Situ</i> Cross-Linking Polymerization and Electrospinning. Industrial & Engineering Chemistry Research, 2018, 57, 17048-17057.	3.7	25
103	Design of Robust Thermal and Anion Dual-Responsive Membranes with Switchable Response Temperature. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36443-36455.	8.0	20
104	A mussel-inspired approach towards heparin-immobilized cellulose gel beads for selective removal of low density lipoprotein from whole blood. Carbohydrate Polymers, 2018, 202, 116-124.	10.2	29
105	Design of carboxymethyl chitosan-based heparin-mimicking cross-linked beads for safe and efficient blood purification. International Journal of Biological Macromolecules, 2018, 117, 392-400.	7. 5	18
106	Bidirectionally pH-Responsive Zwitterionic Polymer Hydrogels with Switchable Selective Adsorption Capacities for Anionic and Cationic Dyes. Industrial & Engineering Chemistry Research, 2018, 57, 8209-8219.	3.7	35
107	Antibacterial Nanoagents: Nonchemotherapic and Robust Dual-Responsive Nanoagents with On-Demand Bacterial Trapping, Ablation, and Release for Efficient Wound Disinfection (Adv. Funct.) Tj ETQq $1\ 1\ 0$).7 849 14	rg B T /Overlo
108	A substrate-independent ultrathin hydrogel film as an antifouling and antibacterial layer for a microfiltration membrane anchored ⟨i⟩via⟨/i⟩ a layer-by-layer thiol–ene click reaction. Journal of Materials Chemistry B, 2018, 6, 3904-3913.	5.8	39

#	Article	IF	CITATIONS
109	Nonchemotherapic and Robust Dualâ€Responsive Nanoagents with Onâ€Demand Bacterial Trapping, Ablation, and Release for Efficient Wound Disinfection. Advanced Functional Materials, 2018, 28, 1705708.	14.9	133
110	Root-soil structure inspired hydrogel microspheres with high dimensional stability and anion-exchange capacity. Journal of Colloid and Interface Science, 2018, 532, 680-688.	9.4	13
111	Nanofibrous membranes with surface migration of functional groups for ultrafast wastewater remediation. Journal of Materials Chemistry A, 2018, 6, 13359-13372.	10.3	60
112	Heparin-mimetic polyurethane hydrogels with anticoagulant, tunable mechanical property and controllable drug releasing behavior. International Journal of Biological Macromolecules, 2017, 98, 1-11.	7.5	14
113	One-pot synthesis of highly hemocompatible polyurethane/polyethersulfone composite membranes. Polymer Bulletin, 2017, 74, 3797-3818.	3.3	6
114	Engineering of hemocompatible and antifouling polyethersulfone membranes by blending with heparin-mimicking microgels. Biomaterials Science, 2017, 5, 1112-1121.	5.4	33
115	Design of Antibacterial Poly(ether sulfone) Membranes via Covalently Attaching Hydrogel Thin Layers Loaded with Ag Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15962-15974.	8.0	91
116	Design of anion species/strength responsive membranes via in-situ cross-linked copolymerization of ionic liquids. Journal of Membrane Science, 2017, 535, 158-167.	8.2	29
117	Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes. Carbohydrate Polymers, 2017, 168, 310-319.	10.2	62
118	Core@shell poly (acrylic acid) microgels/polyethersulfone beads for dye uptake from wastewater. Journal of Environmental Chemical Engineering, 2017, 5, 1732-1743.	6.7	16
119	Substrate-Independent Ag-Nanoparticle-Loaded Hydrogel Coating with Regenerable Bactericidal and Thermoresponsive Antibacterial Properties. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44782-44791.	8.0	85
120	Anion-Responsive Poly(ionic liquid)s Gating Membranes with Tunable Hydrodynamic Permeability. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32237-32247.	8.0	25
121	Inflammation-responsive self-regulated drug release from ultrathin hydrogel coating. Colloids and Surfaces B: Biointerfaces, 2017, 158, 518-526.	5.0	22
122	Hexanediamine functionalized poly (glycidyl methacrylate-co-N-vinylpyrrolidone) particles for bilirubin removal. Journal of Colloid and Interface Science, 2017, 504, 214-222.	9.4	36
123	A self-defensive bilayer hydrogel coating with bacteria triggered switching from cell adhesion to antibacterial adhesion. Polymer Chemistry, 2017, 8, 5344-5353.	3.9	20
124	Co-deposition towards mussel-inspired antifouling and antibacterial membranes by using zwitterionic polymers and silver nanoparticles. Journal of Materials Chemistry B, 2017, 5, 7186-7193.	5.8	89
125	Multi-responsive, tough and reversible hydrogels with tunable swelling property. Journal of Hazardous Materials, 2017, 322, 499-507.	12.4	33
126	Super-Anticoagulant Heparin-Mimicking Hydrogel Thin Film Attached Substrate Surfaces to Improve Hemocompatibility. Macromolecular Bioscience, 2017, 17, 1600281.	4.1	31

#	Article	IF	CITATIONS
127	A facile approach towards amino-coated polyethersulfone particles for the removal of toxins. Journal of Colloid and Interface Science, 2017, 485, 39-50.	9.4	49
128	Functional Polymers for Biointerface Engineering. International Journal of Polymer Science, 2017, 2017, 1-2.	2.7	0
129	Highly hemo-compatible, mechanically strong, and conductive dual cross-linked polymer hydrogels. Journal of Materials Chemistry B, 2016, 4, 8016-8024.	5.8	28
130	Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry. Acta Biomaterialia, 2016, 40, 162-171.	8.3	84
131	A recyclable and regenerable magnetic chitosan absorbent for dye uptake. Carbohydrate Polymers, 2016, 150, 201-208.	10.2	47
132	A versatile approach towards multi-functional surfaces via covalently attaching hydrogel thin layers. Journal of Colloid and Interface Science, 2016, 484, 60-69.	9.4	36
133	Host–Guest Self-Assembly Toward Reversible Thermoresponsive Switching for Bacteria Killing and Detachment. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23523-23532.	8.0	68
134	Synthesis and Characterization of Ultrahigh Ion-Exchange Capacity Polymeric Membranes. Industrial & Lamp; Engineering Chemistry Research, 2016, 55, 9667-9675.	3.7	14
135	Heparin-Like Chitosan Hydrogels with Tunable Swelling Behavior, Prolonged Clotting Times, and Prevented Contact Activation and Complement Activation. Biomacromolecules, 2016, 17, 4011-4020.	5.4	39
136	Graphene oxide-based polyethersulfone core–shell particles for dye uptake. RSC Advances, 2016, 6, 102389-102397.	3.6	11
137	Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property. Colloid and Polymer Science, 2016, 294, 441-453.	2.1	32
138	Preparation, characterization and application of poly(sodium p-styrenesulfonate)/poly(methyl) Tj ETQq0 0 0 rgBT	/Qverlock	10 ₂₁ Tf 50 302
139	Functional polyethersulfone particles for the removal of bilirubin. Journal of Materials Science: Materials in Medicine, 2016, 27, 28.	3.6	28
140	A facile approach toward multi-functional polyurethane/polyethersulfone composite membranes for versatile applications. Materials Science and Engineering C, 2016, 59, 556-564.	7.3	35
141	Graphene oxide-based polymeric membranes for broad water pollutant removal. RSC Advances, 2015, 5, 100651-100662.	3.6	39
142	In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4202-4215.	8.0	40
143	In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery. Biomacromolecules, 2015, 16, 2522-2528.	5.4	150
144	Redox-responsive polymeric membranes via supermolecular host–guest interactions. Journal of Membrane Science, 2015, 480, 139-152.	8.2	10

#	Article	IF	CITATIONS
145	A facile approach toward multifunctional polyethersulfone membranes viain situcross-linked copolymerization. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1013-1034.	3.5	5
146	Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals. Carbohydrate Polymers, 2015, 133, 587-595.	10.2	130
147	Molecularly imprinted polyethersulfone membranes for the sieving, binding and recognition of bisphenol A. Desalination and Water Treatment, 2014, 52, 5781-5789.	1.0	6
148	Facile and Green Approach towards Electrically Conductive Hemicellulose Hydrogels with Tunable Conductivity and Swelling Behavior. Chemistry of Materials, 2014, 26, 4265-4273.	6.7	83
149	Blood activation and compatibility on single-molecular-layer biointerfaces. Journal of Materials Chemistry B, 2014, 2, 4911-4921.	5.8	53
150	A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior. Polymer, 2014, 55, 2967-2976.	3.8	76
151	Covalent Deposition of Zwitterionic Polymer and Citric Acid by Click Chemistry-Enabled Layer-by-Layer Assembly for Improving the Blood Compatibility of Polysulfone Membrane. Langmuir, 2014, 30, 5115-5125.	3.5	74
152	Blood compatibility of polyethersulfone membrane by blending a sulfated derivative of chitosan. Carbohydrate Polymers, 2013, 95, 64-71.	10.2	50
153	Preparation and characterization of sulfonated polyethersulfone membranes by a facile approach. European Polymer Journal, 2013, 49, 738-751.	5.4	54
154	Preparation and Characterization of pH-Sensitive Polyethersulfone Membranes Blended with Poly(methyl methacrylate- <i>co</i> -maleic anhydride) Copolymer. Separation Science and Technology, 2013, 48, 1941-1953.	2.5	9
155	Modification of polyethersulfone membranes using terpolymers engineered and integrated antifouling and anticoagulant properties. Polymers for Advanced Technologies, 2013, 24, 1040-1050.	3.2	27
156	Molecular Imprinted Polysulfone Membranes for the Sieving, Binding, and Recognition of Bisphenol A. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 17-22.	3.4	3
157	General and Biomimetic Approach to Biopolymer-Functionalized Graphene Oxide Nanosheet through Adhesive Dopamine. Biomacromolecules, 2012, 13, 4236-4246.	5.4	141
158	The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. Journal of Membrane Science, 2012, 417-418, 228-236.	8.2	248
159	Proteinâ€grafted carboxylic poly(ether sulfone) membranes: Preparation and characterization. Journal of Applied Polymer Science, 2012, 126, 1277-1290.	2.6	13
160	Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. Journal of Membrane Science, 2012, 405-406, 261-274.	8.2	138
161	Improved Antifouling Property of Polyethersulfone Hollow Fiber Membranes Using Additive of Poly(ethylene glycol) Methyl Ether- <i>b</i> -Poly(styrene) Copolymers. Industrial & Description (Segment) Engineering Chemistry Research, 2011, 50, 3295-3303.	3.7	49
162	Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)–b-poly(methyl methacrylate)–b-poly(vinyl pyrrolidone). Acta Biomaterialia, 2011, 7, 3370-3381.	8.3	190

#	Article	IF	CITATIONS
163	Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles. Journal of Membrane Science, 2011, 369, 258-266.	8.2	121
164	Remarkable pH-sensitivity and anti-fouling property of terpolymer blended polyethersulfone hollow fiber membranes. Journal of Membrane Science, 2011, 378, 369-381.	8.2	62
165	Surface modification of polyethersulfone membrane by grafting bovine serum albumin. Fibers and Polymers, 2010, 11, 960-966.	2.1	20
166	Preparation of polyethersulfone–alginate microcapsules for controlled release. Journal of Applied Polymer Science, 2009, 111, 651-657.	2.6	3
167	Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/poly(acrylonitrile-co-acrylic acid) blended membrane. Journal of Membrane Science, 2009, 329, 46-55.	8.2	152