
Eva Estebanez-Perpiña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8467795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oleic acid is an endogenous ligand of TLX/NR2E1 that triggers hippocampal neurogenesis. Proceedings of the United States of America, 2022, 119, e2023784119.	7.1	30
2	Topological dynamics of an intrinsically disordered Nâ€ŧerminal domain of the human androgen receptor. Protein Science, 2022, 31, .	7.6	11
3	Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Seminars in Cancer Biology, 2021, 73, 58-75.	9.6	25
4	Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Cancers, 2021, 13, 509.	3.7	29
5	Glucocorticoid Resistance: Interference between the Glucocorticoid Receptor and the MAPK Signalling Pathways. International Journal of Molecular Sciences, 2021, 22, 10049.	4.1	27
6	Nuclear receptor crosstalk — defining the mechanisms for therapeutic innovation. Nature Reviews Endocrinology, 2020, 16, 363-377.	9.6	113
7	Diversity of Quaternary Structures Regulates Nuclear Receptor Activities. Trends in Biochemical Sciences, 2019, 44, 2-6.	7.5	13
8	Non-canonical dimerization of the androgen receptor and other nuclear receptors: implications for human disease. Endocrine-Related Cancer, 2019, 26, R479-R497.	3.1	19
9	Regulation of Androgen Receptor Activity by Transient Interactions of Its Transactivation Domain with General Transcription Regulators. Structure, 2018, 26, 145-152.e3.	3.3	45
10	Structure of the homodimeric androgen receptor ligand-binding domain. Nature Communications, 2017, 8, 14388.	12.8	131
11	EPI-001, A Compound Active against Castration-Resistant Prostate Cancer, Targets Transactivation Unit 5 of the Androgen Receptor. ACS Chemical Biology, 2016, 11, 2499-2505.	3.4	109
12	Thinking Outside the Box: Alternative Binding Sites in the Ligand Binding Domain of Nuclear Receptors. , 2015, , 179-203.		5
13	Advances in our structural understanding of orphan nuclear receptors. Trends in Biochemical Sciences, 2015, 40, 25-35.	7.5	57
14	Coregulator Control of Androgen Receptor Action by a Novel Nuclear Receptor-binding Motif. Journal of Biological Chemistry, 2014, 289, 8839-8851.	3.4	46
15	Allosteric mechanisms of nuclear receptors: insights from computational simulations. Molecular and Cellular Endocrinology, 2014, 393, 75-82.	3.2	21
16	The Oncoprotein BCL11A Binds to Orphan Nuclear Receptor TLX and Potentiates its Transrepressive Function. PLoS ONE, 2012, 7, e37963.	2.5	24
17	Allosteric Conversation in the Androgen Receptor Ligand-Binding Domain Surfaces. Molecular Endocrinology, 2012, 26, 1078-1090.	3.7	58
18	A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Molecular and Cellular Endocrinology, 2012, 348, 394-402.	3.2	77

#	Article	IF	CITATIONS
19	The Androgen Receptor Coactivator-Binding Interface. , 2009, , 297-311.		3
20	Effects of adult dysthyroidism on the morphology of hippocampal neurons. Behavioural Brain Research, 2008, 188, 348-354.	2.2	31
21	6-Azido-7-nitro-1,4-dihydroquinoxaline-2,3-dione (ANQX) Forms an Irreversible Bond To the Active Site of the GluR2 AMPA Receptor. Journal of Medicinal Chemistry, 2008, 51, 5856-5860.	6.4	16
22	A surface on the androgen receptor that allosterically regulates coactivator binding. Proceedings of the United States of America, 2007, 104, 16074-16079.	7.1	269
23	Structural Insight into the Mode of Action of a Direct Inhibitor of Coregulator Binding to the Thyroid Hormone Receptor. Molecular Endocrinology, 2007, 21, 2919-2928.	3.7	57
24	Perspectives on designs of antiandrogens for prostate cancer. Expert Opinion on Drug Discovery, 2007, 2, 1341-1355.	5.0	10
25	Inhibitors of the Interaction of a Thyroid Hormone Receptor and Coactivators:  Preliminary Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2007, 50, 5269-5280.	6.4	41
26	A High-Throughput Screening Method to Identify Small Molecule Inhibitors of Thyroid Hormone Receptor Coactivator Binding. Science Signaling, 2006, 2006, pl3-pl3.	3.6	27
27	Discovery of Small Molecule Inhibitors of the Interaction of the Thyroid Hormone Receptor with Transcriptional Coregulators. Journal of Biological Chemistry, 2005, 280, 43048-43055.	3.4	96
28	The Molecular Mechanisms of Coactivator Utilization in Ligand-dependent Transactivation by the Androgen Receptor. Journal of Biological Chemistry, 2005, 280, 8060-8068.	3.4	139
29	Crystal structure of the apoptosis-inducing human granzyme A dimer. Nature Structural and Molecular Biology, 2003, 10, 535-540.	8.2	52
30	The 2.2-Ã Crystal Structure of Human Pro-granzyme K Reveals a Rigid Zymogen with Unusual Features. Journal of Biological Chemistry, 2002, 277, 50923-50933.	3.4	55
31	Crystal structure of a novel Mid-gut procarboxypeptidase from the cotton pest Helicoverpa armigera. Journal of Molecular Biology, 2001, 313, 629-638.	4.2	42
32	Crystal Structure of the Caspase Activator Human Granzyme B, a Proteinase Highly Specific for an Asp-P1 Residue. Biological Chemistry, 2000, 381, 1203-14.	2.5	60