Freddy Kleitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/846705/publications.pdf Version: 2024-02-01

FRENDY KIEITZ

#	Article	IF	CITATIONS
1	Nanocast nitrogen-containing ordered mesoporous carbons from glucosamine for selective CO2 capture. Materials Today Sustainability, 2022, 17, 100089.	4.1	9
2	Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis. Nature Communications, 2022, 13, 282.	12.8	83
3	A Covalent Organic Framework/Graphene Dual-Region Hydrogel for Enhanced Solar-Driven Water Generation. Journal of the American Chemical Society, 2022, 144, 3083-3090.	13.7	115
4	A perspective on developing solid-phase extraction technologies for industrial-scale critical materials recovery. Green Chemistry, 2022, 24, 2752-2765.	9.0	24
5	Targeting Gut Bacteria Using Inulin onjugated Mesoporous Silica Nanoparticles (Adv. Mater.) Tj ETQq1 1 0.78	4314 rgBT 3.7	- /Overlock
6	Defect-Engineered Hydroxylated Mesoporous Spinel Oxides as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Interfaces, 2022, 14, 23307-23321.	8.0	33
7	TANNylation of mesoporous silica nanoparticles and bioactivity profiling in intestinal cells. Journal of Colloid and Interface Science, 2022, 623, 962-973.	9.4	1
8	Ultrathin Covalent Organic Framework Anchored on Graphene for Enhanced Organic Pollutant Removal. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
9	On the importance of the linking chemistry for the PEGylation of mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2021, 589, 453-461.	9.4	29
10	Irreversible Adsorption of Serum Proteins onto Nanoparticles. Particle and Particle Systems Characterization, 2021, 38, .	2.3	4
11	Facile Synthesis of Spatiallyâ€Functionalized Coreâ€Shell Nanocatalysts with 3â€D Mesopore Structure. ChemCatChem, 2021, 13, 1140-1145.	3.7	3
12	Reassessing the Physicochemical Properties of Ordered Mesoporous Polymer and Copolymer Nanocasts. Chemie-Ingenieur-Technik, 2021, 93, 916-928.	0.8	3
13	Insights into the intraparticle morphology of dendritic mesoporous silica nanoparticles from electron tomographic reconstructions. Journal of Colloid and Interface Science, 2021, 592, 296-309.	9.4	9
14	Metal-Free Hyper-Cross-Linked Polymers from Benzyl Methyl Ethers: A Route to Polymerization Catalyst Recycling. Macromolecules, 2021, 54, 9217-9222.	4.8	19
15	Evaporationâ€Induced Selfâ€Assembly of Small Peptideâ€Conjugated Silica Nanoparticles. Angewandte Chemie, 2021, 133, 22882.	2.0	0
16	Evaporationâ€Induced Selfâ€Assembly of Small Peptideâ€Conjugated Silica Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 22700-22705.	13.8	10
17	Phosphonated mesoporous silica nanoparticles bearing ruthenium complexes used as molecular probes for tracking oxygen levels in cells and tissues. RSC Advances, 2021, 11, 5865-5873.	3.6	3
18	Incorporation of Cu/Ni in Ordered Mesoporous Coâ€Based Spinels to Facilitate Oxygen Evolution and Reduction Reactions in Alkaline Media and Aprotic Liâ^'O 2 Batteries. ChemSusChem, 2021, , .	6.8	9

#	Article	IF	CITATIONS
19	Mesoporous polymer-silica nanocomposites with stimuli responsive functional groups. Microporous and Mesoporous Materials, 2020, 291, 109690.	4.4	4
20	Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. Journal of Controlled Release, 2020, 326, 544-555.	9.9	75
21	Understanding Selectivity of Mesoporous Silica-Grafted Diglycolamide-Type Ligands in the Solid-Phase Extraction of Rare Earths. ACS Applied Materials & Interfaces, 2020, 12, 57003-57016.	8.0	34
22	Nanocast Mixed Ni–Co–Mn Oxides with Controlled Surface and Pore Structure for Electrochemical Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 5597-5609.	5.1	20
23	Morphology–transport relationships for SBA-15 and KIT-6 ordered mesoporous silicas. Physical Chemistry Chemical Physics, 2020, 22, 11314-11326.	2.8	37
24	Exploring the confinement of polymer nanolayers into ordered mesoporous silica using advanced gas physisorption. Journal of Colloid and Interface Science, 2020, 579, 489-507.	9.4	10
25	Pore confinement and surface charge effects in protein-mesoporous silica nanoparticles formulation for oral drug delivery. Microporous and Mesoporous Materials, 2020, 306, 110482.	4.4	16
26	A microfluidic approach to micromembrane synthesis for complex release profiles of nanocarriers. Lab on A Chip, 2020, 20, 1066-1071.	6.0	12
27	Smart Proteinâ€Based Formulation of Dendritic Mesoporous Silica Nanoparticles: Toward Oral Delivery of Insulin. Chemistry - A European Journal, 2020, 26, 5195-5199.	3.3	26
28	Gastro-protective protein-silica nanoparticles formulation for oral drug delivery: In vitro release, cytotoxicity and mitochondrial activity. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 171-180.	4.3	24
29	Dynamic Electric Field Alignment of Metal–Organic Framework Microrods. Journal of the American Chemical Society, 2019, 141, 12989-12993.	13.7	20
30	Mesoporous Nanocast Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. Inorganics, 2019, 7, 98.	2.7	17
31	Direct ink writing of catalytically active UiO-66 polymer composites. Chemical Communications, 2019, 55, 2190-2193.	4.1	57
32	Stereolithographic 3D printing of extrinsically self-healing composites. Scientific Reports, 2019, 9, 388.	3.3	42
33	Size-Selective Separation of Rare Earth Elements Using Functionalized Mesoporous Silica Materials. ACS Applied Materials & Interfaces, 2019, 11, 23681-23691.	8.0	41
34	Selective separation and preconcentration of Th(<scp>iv</scp>) using organo-functionalized, hierarchically porous silica monoliths. Journal of Materials Chemistry A, 2019, 7, 289-302.	10.3	33
35	Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core–Shell Materials. Advanced Materials, 2018, 30, e1704439.	21.0	114
36	Synthesis and radiometric evaluation of diglycolamide functionalized mesoporous silica for the chromatographic separation of actinides Th, Pa and U. Dalton Transactions, 2018, 47, 5189-5195.	3.3	19

#	Article	IF	CITATIONS
37	Iron-Modified Mesoporous Silica as an Efficient Solid Lewis Acid Catalyst for the Mukaiyama Aldol Reaction. ACS Catalysis, 2018, 8, 1932-1944.	11.2	40
38	On the nanopore confinement of therapeutic drugs into mesoporous silica materials and its implications. Microporous and Mesoporous Materials, 2018, 270, 109-119.	4.4	50
39	Designed Synthesis of Mesoporous Solid-Supported Lewis Acid–Base Pairs and Their CO ₂ Adsorption Behaviors. ACS Applied Materials & Interfaces, 2018, 10, 13199-13210.	8.0	25
40	Selective Separation and Preconcentration of Scandium with Mesoporous Silica. ACS Applied Materials & amp; Interfaces, 2018, 10, 448-457.	8.0	59
41	Disulfideâ€Bridged Organosilica Frameworks: Designed, Synthesis, Redoxâ€Triggered Biodegradation, and Nanobiomedical Applications. Advanced Functional Materials, 2018, 28, 1707325.	14.9	150
42	A Toolbox for the Synthesis of Multifunctionalized Mesoporous Silica Nanoparticles for Biomedical Applications. ACS Omega, 2018, 3, 17496-17510.	3.5	48
43	Sprayâ€Dried Mesoporous Mixed Cuâ€Ni Oxide@Graphene Nanocomposite Microspheres for High Power and Durable Liâ€ion Battery Anodes. Advanced Energy Materials, 2018, 8, 1802438.	19.5	70
44	Recent Advances in the Separation of Rare Earth Elements Using Mesoporous Hybrid Materials. Chemical Record, 2018, 18, 1261-1276.	5.8	73
45	Hindered Diffusion in Ordered Mesoporous Silicas: Insights from Pore-Scale Simulations in Physical Reconstructions of SBA-15 and KIT-6 Silica. Journal of Physical Chemistry C, 2018, 122, 12350-12361.	3.1	56
46	Functionalization of Mesoporous Carbon Materials for Selective Separation of Lanthanides under Acidic Conditions. ACS Applied Materials & amp; Interfaces, 2017, 9, 12003-12012.	8.0	63
47	Carbon Dioxide Oversolubility in Nanoconfined Liquids for the Synthesis of Cyclic Carbonates. ChemCatChem, 2017, 9, 1886-1890.	3.7	25
48	Lewis acidity quantification and catalytic activity of Ti, Zr and Al-supported mesoporous silica. Dalton Transactions, 2017, 46, 3864-3876.	3.3	38
49	Catalytic conversion of syngas to higher alcohols over mesoporous perovskite catalysts. Journal of Industrial and Engineering Chemistry, 2017, 51, 196-205.	5.8	18
50	Selectively Tuned Pore Condensation and Hysteresis Behavior in Mesoporous SBA-15 Silica: Correlating Material Synthesis to Advanced Gas Adsorption Analysis. Journal of Physical Chemistry C, 2017, 121, 24505-24526.	3.1	50
51	Highly Efficient and Selective Recovery of Rare Earth Elements Using Mesoporous Silica Functionalized by Preorganized Chelating Ligands. ACS Applied Materials & Interfaces, 2017, 9, 38584-38593.	8.0	72
52	Antibody-conjugated mesoporous silica nanoparticles for brain microvessel endothelial cell targeting. Journal of Materials Chemistry B, 2017, 5, 7721-7735.	5.8	39
53	Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale, 2017, 9, 15252-15277.	5.6	177
54	Fluorinated Mesoporous Silica Nanoparticles for Binuclear Probes in ¹ H and ¹⁹ F Magnetic Resonance Imaging. Langmuir, 2017, 33, 10531-10542.	3.5	21

#	Article	IF	CITATIONS
55	<i>In Vitro</i> Dissolution, Cellular Membrane Permeability, and Anti-Inflammatory Response of Resveratrol-Encapsulated Mesoporous Silica Nanoparticles. Molecular Pharmaceutics, 2017, 14, 4431-4441.	4.6	82
56	Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity. Chemistry of Materials, 2016, 28, 4243-4258.	6.7	132
57	Smart surface-enhanced Raman scattering traceable drug delivery systems. Nanoscale, 2016, 8, 12803-12811.	5.6	17
58	Insights into the pore structure of KIT-6 and SBA-15 ordered mesoporous silica – recent advances by combining physical adsorption with mercury porosimetry. New Journal of Chemistry, 2016, 40, 4351-4360.	2.8	44
59	Synthesis of microporous/mesoporous core–shell materials with crystalline zeolitic shell and supported metal oxide silica core. CrystEngComm, 2016, 18, 4452-4464.	2.6	1
60	Functionalization of mesoporous materials for lanthanide and actinide extraction. Dalton Transactions, 2016, 45, 14832-14854.	3.3	126
61	Nanostructured Organosilica Hybrids as Highly Efficient and Regenerable Sorbents for Rare Earth Extraction. ACS Symposium Series, 2016, , 107-117.	0.5	3
62	Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials, 2016, 91, 90-127.	11.4	224
63	Support effects in rare earth element separation using diglycolamide-functionalized mesoporous silica. New Journal of Chemistry, 2016, 40, 4325-4334.	2.8	38
64	Pore structure effects on the kinetics of methanol oxidation over nanocast mesoporous perovskites. Chinese Journal of Catalysis, 2016, 37, 32-42.	14.0	10
65	Synergy between structure direction and alkalinity toward fast crystallization, controlled morphology and high phase purity of ZSM-12 zeolite. Microporous and Mesoporous Materials, 2016, 227, 258-271.	4.4	18
66	Cancerâ€Cellâ€Specific Nuclearâ€Targeted Drug Delivery by Dualâ€Ligandâ€Modified Mesoporous Silica Nanoparticles. Small, 2015, 11, 5919-5926.	10.0	90
67	Zeolitic Core@Shell Adsorbents for the Selective Removal of Free Glycerol from Crude Biodiesel. ChemSusChem, 2015, 8, 2093-2105.	6.8	13
68	Mesoporous organosilica membranes: Effects of pore geometry and calcination conditions on the membrane distillation performance for desalination. Desalination, 2015, 370, 53-62.	8.2	19
69	Selective recovery of rare earth elements using chelating ligands grafted on mesoporous surfaces. RSC Advances, 2015, 5, 103782-103789.	3.6	47
70	Metal chelate grafting at the surface of mesoporous silica nanoparticles (MSNs): physico-chemical and biomedical imaging assessment. Journal of Materials Chemistry B, 2015, 3, 748-758.	5.8	26
71	Influence of confinement in mesoporous silica on diffusion of a mixture of carbon dioxide and an imidazolium-based ionic liquid by high field diffusion NMR. Microporous and Mesoporous Materials, 2015, 206, 177-183.	4.4	23
72	Nanoporous organosilica membrane for water desalination: Theoretical study on the water transport. Journal of Membrane Science, 2015, 482, 56-66.	8.2	33

#	Article	IF	CITATIONS
73	Synthesis of mesoporous carbon–silica nanocomposite water-treatment membranes using a triconstituent co-assembly method. Journal of Materials Chemistry A, 2015, 3, 10480-10491.	10.3	32
74	Role of Metal–Support Interactions, Particle Size, and Metal–Metal Synergy in CuNi Nanocatalysts for H ₂ Generation. ACS Catalysis, 2015, 5, 5505-5511.	11.2	150
75	Mesoporous Silica Nanoparticles under Sintering Conditions: A Quantitative Study. Langmuir, 2015, 31, 13011-13021.	3.5	24
76	Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. Journal of Materials Chemistry B, 2015, 3, 1712-1721.	5.8	66
77	Critical assessment of the base catalysis properties of amino-functionalized mesoporous polymer-SBA-15 nanocomposites. Applied Catalysis A: General, 2015, 504, 493-503.	4.3	30
78	A generalized method toward high dispersion of transition metals in large pore mesoporous metal oxide/silica hybrids. Journal of Colloid and Interface Science, 2015, 449, 102-114.	9.4	17
79	Large-pore mesoporous RuNi-doped TiO2–Al2O3 nanocomposites for highly efficient selective CO methanation in hydrogen-rich reformate gases. Applied Catalysis B: Environmental, 2015, 165, 752-762.	20.2	40
80	Intracellular Microenvironmentâ€Responsive Dendrimer‣ike Mesoporous Nanohybrids for Traceable, Effective, and Safe Gene Delivery. Advanced Functional Materials, 2014, 24, 7627-7637.	14.9	59
81	Frontispiece: Three-Dimensional Ordered Assembly of Thin-Shell Au/TiO2Hollow Nanospheres for Enhanced Visible-Light-Driven Photocatalysis. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	13.8	0
82	Threeâ€Dimensional Ordered Assembly of Thinâ€Shell Au/TiO ₂ Hollow Nanospheres for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Angewandte Chemie - International Edition, 2014, 53, 6618-6623.	13.8	202
83	Nanoporous Sorbents: Nanostructured Hybrid Materials for the Selective Recovery and Enrichment of Rare Earth Elements (Adv. Funct. Mater. 18/2014). Advanced Functional Materials, 2014, 24, 2667-2667.	14.9	0
84	Synthesis, structural characterization, and electrochemical performance of nanocast mesoporous Cu-/Fe-based oxides. Journal of Materials Chemistry A, 2014, 2, 3065.	10.3	24
85	Nanostructured Hybrid Materials for the Selective Recovery and Enrichment of Rare Earth Elements. Advanced Functional Materials, 2014, 24, 2668-2676.	14.9	108
86	Nanocast LaNiO ₃ Perovskites as Precursors for the Preparation of Coke-Resistant Dry Reforming Catalysts. ACS Catalysis, 2014, 4, 3837-3846.	11.2	157
87	Nanocast mesoporous mixed metal oxides for catalytic applications. Comptes Rendus Chimie, 2014, 17, 641-655.	0.5	25
88	Mesoporous Silica Nanoparticles: Selective Surface Functionalization for Optimal Relaxometric and Drug Loading Performances. Advanced Functional Materials, 2014, 24, 5911-5923.	14.9	73
89	On the origin of the high capacitance of carbon derived from seaweed with an apparently low surface area. Journal of Materials Chemistry A, 2014, 2, 18998-19004.	10.3	65
90	Nanoporous ferrocene-based cross-linked polymers and their hydrogen sorption properties. Microporous and Mesoporous Materials, 2014, 188, 182-189.	4.4	20

#	Article	IF	CITATIONS
91	Design of multicomponent photocatalysts for hydrogen production under visible light using water-soluble titanate nanodisks. Nanoscale, 2014, 6, 4819-4829.	5.6	24
92	Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. Journal of Materials Chemistry A, 2013, 1, 9992.	10.3	275
93	Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies. Nanoscale, 2013, 5, 11499.	5.6	44
94	Design of water-soluble CdS–titanate–nickel nanocomposites for photocatalytic hydrogen production under sunlight. Journal of Materials Chemistry A, 2013, 1, 13308.	10.3	71
95	High-performance solid catalysts for H2 generation from ammonia borane: progress through synergetic Cu–Ni interactions. Journal of Materials Chemistry A, 2013, 1, 14790.	10.3	60
96	Nanoporous ammonium molybdophosphate–silica hybrids as regenerable ultra-selective extraction agents for radiocesium monitoring. New Journal of Chemistry, 2013, 37, 3877.	2.8	20
97	Luminescent Triarylboron-Functionalized Zinc Carboxylate Metal–Organic Framework. Inorganic Chemistry, 2013, 52, 1673-1675.	4.0	51
98	pHâ€Responsive Nutraceutical–Mesoporous Silica Nanoconjugates with Enhanced Colloidal Stability. Angewandte Chemie - International Edition, 2013, 52, 2318-2322.	13.8	84
99	Oxidation Stability of Nanographite Materials. Advanced Energy Materials, 2013, 3, 1176-1179.	19.5	22
100	Nanoporous organosilica membrane for water desalination. Chemical Communications, 2013, 49, 4534.	4.1	53
101	Confinement of the Grubbs catalyst in alkene-functionalized mesoporous silica. Microporous and Mesoporous Materials, 2013, 175, 170-177.	4.4	15
102	Enzymeâ€Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie - International Edition, 2012, 51, 12486-12489.	13.8	151
103	Tailored Mesostructured Copper/Ceria Catalysts with Enhanced Performance for Preferential Oxidation of CO at Low Temperature. Angewandte Chemie - International Edition, 2012, 51, 12032-12035.	13.8	143
104	Mapping the location of grafted PNIPAAM in mesoporous SBA-15 silica using gas adsorption analysis. Physical Chemistry Chemical Physics, 2012, 14, 5651.	2.8	24
105	Large Pore Mesostructured Organosilica-Phosphonate Hybrids as Highly Efficient and Regenerable Sorbents for Uranium Sequestration. Chemistry of Materials, 2012, 24, 4166-4176.	6.7	116
106	Tabletability of whey protein isolates. International Dairy Journal, 2012, 27, 92-98.	3.0	11
107	Poly- <scp>l</scp> -lysine Functionalized Large Pore Cubic Mesostructured Silica Nanoparticles as Biocompatible Carriers for Gene Delivery. ACS Nano, 2012, 6, 2104-2117.	14.6	247
108	On the Interaction of Phosphines with High Surface Area Mesoporous Silica. Journal of Physical Chemistry C, 2012, 116, 25919-25927.	3.1	15

#	Article	IF	CITATIONS
109	Controlled Synthesis of Titanate Nanodisks as Versatile Building Blocks for the Design of Hybrid Nanostructures. Angewandte Chemie - International Edition, 2012, 51, 6608-6612.	13.8	28
110	Back Cover: Controlled Synthesis of Titanate Nanodisks as Versatile Building Blocks for the Design of Hybrid Nanostructures (Angew. Chem. Int. Ed. 27/2012). Angewandte Chemie - International Edition, 2012, 51, 6794-6794.	13.8	1
111	Kinetics of Methanol Oxidation over Mesoporous Perovskite Catalysts. ChemCatChem, 2012, 4, 387-394.	3.7	40
112	Tailorâ€Made Mesoporous Tiâ€6BAâ€15 Catalysts for Oxidative Desulfurization of Refractory Aromatic Sulfur Compounds in Transport Fuel. ChemCatChem, 2012, 4, 687-697.	3.7	72
113	A solvothermal singleâ€step route towards shapeâ€controlled titanium dioxide nanocrystals. Canadian Journal of Chemical Engineering, 2012, 90, 8-17.	1.7	20
114	Yolk–Shell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation. Advanced Functional Materials, 2012, 22, 591-599.	14.9	346
115	Nanoreactors: Yolk-Shell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation (Adv. Funct. Mater. 3/2012). Advanced Functional Materials, 2012, 22, 661-661.	14.9	2
116	A New Route to Size and Population Control of Silver Clusters on Colloidal TiO ₂ Nanocrystals. ACS Applied Materials & Interfaces, 2011, 3, 2228-2234.	8.0	49
117	Phosphonate-functionalized large pore 3-D cubic mesoporous (KIT-6) hybrid as highly efficient actinide extracting agent. Chemical Communications, 2011, 47, 11525.	4.1	88
118	One-step-impregnation hard templating synthesis of high-surface-area nanostructured mixed metal oxides (NiFe2O4, CuFe2O4 and Cu/CeO2). Chemical Communications, 2011, 47, 10473.	4.1	102
119	Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity. Chemical Communications, 2011, 47, 7797.	4.1	160
120	Novel oxygen carriers for chemical looping combustion: La1â ^{~2} xCexBO3 (B = Co, Mn) perovskites synthesized by reactive grinding and nanocasting. Energy and Environmental Science, 2011, 4, 4258.	30.8	103
121	Enhanced Relaxometric Properties of MRI "Positive―Contrast Agents Confined in Threeâ€Dimensional Cubic Mesoporous Silica Nanoparticles. Advanced Functional Materials, 2011, 21, 4653-4662.	14.9	74
122	Substantiating the Influence of Pore Surface Functionalities on the Stability of Grubbs Catalyst in Mesoporous SBAâ€15 Silica. Chemistry - A European Journal, 2011, 17, 4254-4265.	3.3	35
123	Optimizing Silica Synthesis for the Preparation of Mesoporous Ti-SBA-15 Epoxidation Catalysts. Industrial & Engineering Chemistry Research, 2010, 49, 6977-6985.	3.7	51
124	Probing Adsorption, Pore Condensation, and Hysteresis Behavior of Pure Fluids in Three-Dimensional Cubic Mesoporous KIT-6 Silica. Journal of Physical Chemistry C, 2010, 114, 9344-9355.	3.1	183
125	Controlled Postgrafting of Titanium Chelates for Improved Synthesis of Ti-SBA-15 Epoxidation Catalysts. Chemistry of Materials, 2010, 22, 1988-2000.	6.7	99
126	Cavitation in Metastable Liquid Nitrogen Confined to Nanoscale Pores. Langmuir, 2010, 26, 10147-10157.	3.5	180

#	Article	IF	CITATIONS
127	Insights into pore surface modification of mesoporous polymer–silica composites: introduction of reactive amines. New Journal of Chemistry, 2010, 34, 355.	2.8	38
128	Large pore phenylene-bridged mesoporous organosilica with bicontinuous cubic Ia3ì,,d (KIT-6) mesostructure. Journal of Materials Chemistry, 2010, 20, 8257.	6.7	23
129	Surface properties and epoxidation catalytic activity of Ti-SBA15 prepared by direct synthesis. Journal of Materials Science, 2009, 44, 6727-6735.	3.7	40
130	Organic solvent treatment and physicochemical properties of nanoporous polymer–SBA-15 composite materials. Journal of Materials Science, 2009, 44, 6538-6545.	3.7	10
131	Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals. ACS Nano, 2009, 3, 3737-3743.	14.6	399
132	Grafted Amine/CO2 Interactions in (Gasâ^')Liquidâ^'Solid Adsorption/Absorption Equilibria. Journal of Physical Chemistry C, 2009, 113, 21866-21876.	3.1	15
133	Critical evaluation of the state of iron oxide nanoparticles on different mesoporous silicas prepared by an impregnation method. Microporous and Mesoporous Materials, 2008, 112, 327-337.	4.4	48
134	Polymer-Filled Composite Porous Catalytic Particles for Hydrodynamic Studies in Trickle-Bed Reactors. Industrial & Engineering Chemistry Research, 2008, 47, 2569-2578.	3.7	5
135	A Comprehensive Study of Titanium-Substituted SBA-15 Mesoporous Materials Prepared by Direct Synthesis. Journal of Physical Chemistry C, 2008, 112, 14403-14411.	3.1	65
136	Tailoring mesoporosity and intrawall porosity in large pore silicas: synthesis and nitrogen sorption behavior. Studies in Surface Science and Catalysis, 2008, , 141-148.	1.5	9
137	Three-Dimensional large pore cubic silica mesophases with tailored pore topology: developments and characterization. Studies in Surface Science and Catalysis, 2007, 165, 57-60.	1.5	0
138	Large pore ordered mesoporous silica materials with 3D cubic la3d structure: a comprehensive gas adsorption study. Studies in Surface Science and Catalysis, 2007, 170, 1843-1849.	1.5	9
139	Functionalized mesoporous organic-inorganic hybrids through pore surface-restricted post-polymerization. Studies in Surface Science and Catalysis, 2007, 170, 1836-1842.	1.5	2
140	Structural characterization and systematic gas adsorption studies on a series of novel ordered mesoporous silica materials with 3D cubic la-3d structure (KIT-6). Studies in Surface Science and Catalysis, 2007, , 161-164.	1.5	3
141	On the Nature of the BrÃ,nsted Acidic Groups on Native and Functionalized Mesoporous Siliceous SBA-15 as Studied by Benzylamine Adsorption from Solution. Langmuir, 2007, 23, 4315-4323.	3.5	147
142	Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 1:  Synthesis and Characterization. Journal of Physical Chemistry C, 2007, 111, 3053-3058.	3.1	75
143	Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 2:  Diffusion. Journal of Physical Chemistry C, 2007, 111, 3059-3065.	3.1	29
144	Hard Templating Pathways for the Synthesis of Nanostructured Porous Co3O4. Chemistry of Materials, 2007, 19, 485-496.	6.7	314

#	Article	IF	CITATIONS
145	Exchange Anisotropy in Nanocasted Co3O4Nanowires. Nano Letters, 2006, 6, 2977-2981.	9.1	239
146	A versatile method for the production of monodisperse spherical particles and hollow particles: Templating from binary core-shell structures. Chemical Communications, 2006, , 1203.	4.1	65
147	X-ray Structural Modeling and Gas Adsorption Analysis of Cagelike SBA-16 Silica Mesophases Prepared in a F127/Butanol/H2O System. Chemistry of Materials, 2006, 18, 5070-5079.	6.7	111
148	Phase Domain of the CubicIm3Ì,,mMesoporous Silica in the EO106PO70EO106â^'Butanolâ^'H2O System. Langmuir, 2006, 22, 440-445.	3.5	139
149	Texture Effects of Circularly Ordered Fibers. ChemPhysChem, 2005, 6, 1269-1275.	2.1	3
150	MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:Â Facile Synthesis Domain in a Ternary Triblock Copolymerâ^'Butanolâ^'Water System. Journal of the American Chemical Society, 2005, 127, 7601-7610.	13.7	681
151	Controlled Polymerization in Mesoporous Silica toward the Design of Organicâ ''Inorganic Composite Nanoporous Materials. Journal of the American Chemical Society, 2005, 127, 1924-1932.	13.7	263
152	Pore topology control of three-dimensional large pore cubic silica mesophases. Journal of Materials Chemistry, 2005, 15, 5112.	6.7	50
153	In situ SAXS/XRD on mesoscopically ordered surfactant-silica mesophases; What can we learn?. Materials Research Society Symposia Proceedings, 2004, 847, 374.	0.1	0
154	Transformation of highly ordered large pore silica mesophases (Fm3m, Im3m and p6mm) in a ternary triblock copolymer–butanol–water system. Chemical Communications, 2004, , 1536-1537.	4.1	109
155	Comprehensive Structure Analysis of Ordered Carbon Nanopipe Materials CMK-5 by X-ray Diffraction and Electron Microscopy. Chemistry of Materials, 2004, 16, 2274-2281.	6.7	55
156	Calcination behavior of different surfactant-templated mesostructured silica materials. Microporous and Mesoporous Materials, 2003, 65, 1-29.	4.4	272
157	Large Cage Face-Centered-CubicFm3mMesoporous Silica:Â Synthesis and Structure. Journal of Physical Chemistry B, 2003, 107, 14296-14300.	2.6	296
158	Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubesElectronic supplementary information (ESI) available: TEM images of mesoporous cubic silica and Pt networks, XRD patterns during formation of the cubic phase. See http://www.rsc.org/suppdata/cc/b3/b306504a/. Chemical Communications, 2003, , 2136.	4.1	1,286
159	Expanding horizons of mesoporous materials to non-siliceous systems. Studies in Surface Science and Catalysis, 2003, , 399-406.	1.5	9
160	Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness. Chemical Communications, 2003, , 1340-1341.	4.1	297
161	Structure and properties of porous mesostructured zirconium oxo- phosphate with cubic (la3d) symmetry. Studies in Surface Science and Catalysis, 2003, 146, 221-225.	1.5	2
162	Influence of Cosurfactants on the Properties of Mesostructured Materials. Langmuir, 2002, 18, 4963-4971.	3.5	55

#	Article	IF	CITATIONS
163	Porous Mesostructured Zirconium Oxophosphate with Cubic (Ia3̄d) Symmetry. Chemistry of Materials, 2002, 14, 4134-4144.	6.7	45
164	Drug release from biodegradable silica fibers. Journal of Non-Crystalline Solids, 2002, 306, 1-10.	3.1	54
165	Mesoporous Silica Fibers:Â Synthesis, Internal Structure, and Growth Kinetics. Chemistry of Materials, 2001, 13, 3587-3595.	6.7	139
166	Evolution of mesoporous materials during the calcination process: structural and chemical behavior. Microporous and Mesoporous Materials, 2001, 44-45, 95-109.	4.4	100
167	Targeting Gut Bacteria Using Inulinâ€Conjugated Mesoporous Silica Nanoparticles. Advanced Materials Interfaces, 0, , 2102558.	3.7	4
168	Ultrathin Covalent Organic Framework Anchored on Graphene For Enhanced Organic Pollutant Removal. Angewandte Chemie, 0, , .	2.0	2