List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8466220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic BACH1 deficiency alters mitochondrial function and increases NLRP3 inflammasome activation in mouse macrophages. Redox Biology, 2022, 51, 102265.	9.0	10
2	Luminal Administration of a Water-soluble Carbon Monoxide–releasing Molecule (CORM-3) Mitigates Ischemia/Reperfusion Injury in Rats Following Intestinal Transplantation. Transplantation, 2022, 106, 1365-1375.	1.0	5
3	Inhibition of Adipose Tissue Beiging by HIV Integrase Inhibitors, Dolutegravir and Bictegravir, Is Associated with Adipocyte Hypertrophy, Hypoxia, Elevated Fibrosis, and Insulin Resistance in Simian Adipose Tissue and Human Adipocytes. Cells, 2022, 11, 1841.	4.1	13
4	Increased Sirt1 secreted from visceral white adipose tissue is associated with improved glucose tolerance in obese Nrf2-deficient mice. Redox Biology, 2021, 38, 101805.	9.0	16
5	LIPE-related lipodystrophic syndrome: clinical features and disease modeling using adipose stem cells. European Journal of Endocrinology, 2021, 184, 155-168.	3.7	25
6	Sensitive quantification of carbon monoxide in vivoÂreveals a protective role of circulating hemoglobin in COÂintoxication. Communications Biology, 2021, 4, 425.	4.4	32
7	Carbon monoxide releasing molecule A1 reduces myocardial damage after acute myocardial infarction in a porcine model. Journal of Cardiovascular Pharmacology, 2021, Publish Ahead of Print, e656-e661.	1.9	5
8	Production of carbon monoxide from a He/CO ₂ plasma jet as a new strategy for therapeutic applications. Plasma Processes and Polymers, 2021, 18, 2100069.	3.0	11
9	Adipose tissue senescence is mediated by increased ATP content after a shortâ€ŧerm highâ€fat diet exposure. Aging Cell, 2021, 20, e13421.	6.7	16
10	Therapeutic effects of CO-releaser/Nrf2 activator hybrids (HYCOs) in the treatment of skin wound, psoriasis and multiple sclerosis. Redox Biology, 2020, 34, 101521.	9.0	24
11	Design and Biological Evaluation of Manganese―and Rutheniumâ€Based Hybrid COâ€RMs (HYCOs). ChemMedChem, 2019, 14, 1684-1691.	3.2	15
12	The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration. European Journal of Pharmacology, 2019, 862, 172636.	3.5	12
13	Heme oxygenase-1—Dependent anti-inflammatory effects of atorvastatin in zymosan-injected subcutaneous air pouch in mice. PLoS ONE, 2019, 14, e0216405.	2.5	17
14	TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radical Biology and Medicine, 2019, 137, 131-142.	2.9	33
15	Human and murine macrophages exhibit differential metabolic responses to lipopolysaccharide - A divergent role for glycolysis. Redox Biology, 2019, 22, 101147.	9.0	133
16	HYCO-3, a dual CO-releaser/Nrf2 activator, reduces tissue inflammation in mice challenged with lipopolysaccharide. Redox Biology, 2019, 20, 334-348.	9.0	49
17	MR (Mineralocorticoid Receptor) Induces Adipose Tissue Senescence and Mitochondrial Dysfunction Leading to Vascular Dysfunction in Obesity. Hypertension, 2019, 73, 458-468.	2.7	46
18	CORM â€401 induces calcium signalling, NO increase and activation of pentose phosphate pathway in endothelial cells. FEBS Journal, 2018, 285, 1346-1358.	4.7	19

#	Article	IF	CITATIONS
19	Heme oxygenaseâ€1 induction attenuates senescence in chronic obstructive pulmonary disease lung fibroblasts by protecting against mitochondria dysfunction. Aging Cell, 2018, 17, e12837.	6.7	50
20	Modulation of cellular bioenergetics by CO-releasing molecules and NO-donors inhibits the interaction of cancer cells with human lung microvascular endothelial cells. Pharmacological Research, 2018, 136, 160-171.	7.1	21
21	Carbon monoxide–induced metabolic switch in adipocytes improves insulin resistance in obese mice. JCI Insight, 2018, 3, .	5.0	36
22	Carbon monoxide reverses the metabolic adaptation of microglia cells to an inflammatory stimulus. Free Radical Biology and Medicine, 2017, 104, 311-323.	2.9	51
23	Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death and Differentiation, 2017, 24, 1224-1238.	11.2	202
24	Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. American Journal of Physiology - Cell Physiology, 2017, 312, C302-C313.	4.6	179
25	Detection and Removal of Endogenous Carbon Monoxide by Selective and Cell-Permeable Hemoprotein Model Complexes. Journal of the American Chemical Society, 2017, 139, 5984-5991.	13.7	47
26	Differential Effects of CORM-2 and CORM-401 in Murine Intestinal Epithelial MODE-K Cells under Oxidative Stress. Frontiers in Pharmacology, 2017, 8, 31.	3.5	29
27	Carbon monoxide shifts energetic metabolism from glycolysis to oxidative phosphorylation in endothelial cells. FEBS Letters, 2016, 590, 3469-3480.	2.8	30
28	Unusual Dynamics of Ligand Binding to the Heme Domain of the Bacterial CO Sensor Protein RcoM-2. Journal of Physical Chemistry B, 2016, 120, 10686-10694.	2.6	12
29	Heme Oxygenase-1 and Carbon Monoxide in the Heart. Circulation Research, 2016, 118, 1940-1959.	4.5	160
30	Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochemical Pharmacology, 2016, 102, 64-77.	4.4	68
31	Diverse Nrf2 Activators Coordinated to Cobalt Carbonyls Induce Heme Oxygenase-1 and Release Carbon Monoxide in Vitro and in Vivo. Journal of Medicinal Chemistry, 2016, 59, 756-762.	6.4	48
32	Study of Dense Red Blood Cells in Children with Sickle Cell Disease. Blood, 2016, 128, 4870-4870.	1.4	0
33	Anti-inflammatory activities of carbon monoxide-releasing molecules (CO-RMs) in the brain. SpringerPlus, 2015, 4, L41.	1.2	2
34	Permanent Culture of Macrophages at Physiological Oxygen Attenuates the Antioxidant and Immunomodulatory Properties of Dimethyl Fumarate. Journal of Cellular Physiology, 2015, 230, 1128-1138.	4.1	19
35	Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells. Toxicology and Applied Pharmacology, 2015, 288, 161-178.	2.8	38
36	Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: A role for mitoBKCa channels. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1297-1309.	1.0	60

#	Article	IF	CITATIONS
37	Nrf2 activators modulate oxidative stress responses and bioenergetic profiles of human retinal epithelial cells cultured in normal or high glucose conditions. Pharmacological Research, 2015, 99, 296-307.	7.1	65
38	<scp>CO</scp> and <scp>CO</scp> â€releasing molecules (<scp>CO</scp> â€ <scp>RMs</scp>) in acute gastrointestinal inflammation. British Journal of Pharmacology, 2015, 172, 1557-1573.	5.4	45
39	p21-Dependent Protective Effects of a Carbon Monoxide–Releasing Molecule-3 in Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 304-312.	2.4	39
40	lsothiocyanate–cysteine conjugates protect renal tissue against cisplatin-induced apoptosis via induction of heme oxygenase-1. Pharmacological Research, 2014, 81, 1-9.	7.1	15
41	Heme Oxygenase-1 As a Target for Drug Discovery. Antioxidants and Redox Signaling, 2014, 20, 1810-1826.	5.4	160
42	Design and Synthesis of New Hybrid Molecules That Activate the Transcription Factor Nrf2 and Simultaneously Release Carbon Monoxide. Chemistry - A European Journal, 2014, 20, 14698-14704.	3.3	48
43	Heme oxygenase-1: an emerging therapeutic target to curb cardiac pathology. Basic Research in Cardiology, 2014, 109, 450.	5.9	35
44	CORM-3, a water soluble CO-releasing molecule, uncouples mitochondrial respiration via interaction with the phosphate carrier. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 201-209.	1.0	39
45	Heme oxygenase-1 in diabetic vascular dysfunction. Vascular Pharmacology, 2014, 62, 132-133.	2.1	3
46	Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacological Research, 2013, 76, 132-148.	7.1	150
47	Vasorelaxing effects and inhibition of nitric oxide in macrophages by new iron-containing carbon monoxide-releasing molecules (CO-RMs). Pharmacological Research, 2013, 68, 108-117.	7.1	28
48	CO-releasing molecules: avoiding toxicity and exploiting the beneficial effects of CO for the treatment of cardiovascular disorders. Future Medicinal Chemistry, 2013, 5, 367-369.	2.3	14
49	Treatment with Carbon Monoxide-releasing Molecules and an HO-1 Inducer Enhances the Effects and Expression of µ-Opioid Receptors during Neuropathic Pain. Anesthesiology, 2013, 118, 1180-1197.	2.5	66
50	Antithrombotic Properties of Water-Soluble Carbon Monoxide-Releasing Molecules. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2149-2157.	2.4	52
51	TNF-α/Cycloheximide-Induced Oxidative Stress and Apoptosis in Murine Intestinal Epithelial MODE-K Cells. Current Pharmaceutical Design, 2012, 18, 4414-4425.	1.9	24
52	CORM-3, a carbon monoxide-releasing molecule, alters the inflammatory response and reduces brain damage in a rat model of hemorrhagic stroke*. Critical Care Medicine, 2012, 40, 544-552.	0.9	94
53	Relaxant Effect of a Water Soluble Carbon Monoxide-Releasing Molecule (CORM-3) on Spontaneously Hypertensive Rat Aortas. Cardiovascular Drugs and Therapy, 2012, 26, 285-292.	2.6	20
54	Differential Antibacterial Activity Against <i>Pseudomonas aeruginosa</i> by Carbon Monoxide-Releasing Molecules. Antioxidants and Redox Signaling, 2012, 16, 153-163.	5.4	99

ROBERTO A MOTTERLINI

#	Article	IF	CITATIONS
55	Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium. Journal of Molecular and Cellular Cardiology, 2012, 52, 228-236.	1.9	78
56	New Types of CO-Releasing Molecules (CO-RMs), Based on Iron Dithiocarbamate Complexes and [Fe(CO) ₃ I(S ₂ COEt)]. Organometallics, 2012, 31, 5823-5834.	2.3	31
57	Emerging concepts on the anti-inflammatory actions of carbon monoxide-releasing molecules (CO-RMs). Medical Gas Research, 2012, 2, 28.	2.3	81
58	The Carbon Monoxide Releasing Molecule CORM-2 Attenuates Pseudomonas aeruginosa Biofilm Formation. PLoS ONE, 2012, 7, e35499.	2.5	53
59	Carbon Monoxide Reduces Neuropathic Pain and Spinal Microglial Activation by Inhibiting Nitric Oxide Synthesis in Mice. PLoS ONE, 2012, 7, e43693.	2.5	70
60	Theoretical Insights into the Mechanism of Carbon Monoxide (CO) Release from COâ€Releasing Molecules. Chemistry - A European Journal, 2012, 18, 9267-9275.	3.3	23
61	Inhibition of platelet aggregation by carbon monoxide-releasing molecules (CO-RMs): comparison with NO donors. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 641-650.	3.0	44
62	Downregulation of the Inflammatory Response by CORM-3 Results in Protective Effects in a Model of Postmenopausal Arthritis. Calcified Tissue International, 2012, 91, 69-80.	3.1	13
63	Acute myocardial infarction in streptozotocin-induced hyperglycaemic rats: protection by a carbon monoxide-releasing molecule (CORM-3). Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 137-144.	3.0	19
64	Carbon Monoxide Improves Cardiac Function and Mitochondrial Population Quality in a Mouse Model of Metabolic Syndrome. PLoS ONE, 2012, 7, e41836.	2.5	53
65	A re-investigation of [Fe(l-cysteinate)2(CO)2]2â^': an example of non-heme CO coordination of possible relevance to CO binding to ion channel receptors. Dalton Transactions, 2011, 40, 8328.	3.3	28
66	[Mn(CO)4{S2CNMe(CH2CO2H)}], a new water-soluble CO-releasing molecule. Dalton Transactions, 2011, 40, 4230.	3.3	124
67	Modification of the deoxy-myoglobin/carbonmonoxy-myoglobin UV-vis assay for reliable determination of CO-release rates from organometallic carbonyl complexes. Dalton Transactions, 2011, 40, 5755.	3.3	155
68	Prevention of clinical and histological signs of proteolipid protein (PLP)-induced experimental allergic encephalomyelitis (EAE) in mice by the water-soluble carbon monoxide-releasing molecule (CORM)-A1. Clinical and Experimental Immunology, 2011, 163, 368-374.	2.6	65
69	A carbon monoxide-releasing molecule (CORM-3) uncouples mitochondrial respiration and modulates the production of reactive oxygen species. Free Radical Biology and Medicine, 2011, 50, 1556-1564.	2.9	126
70	The carbon monoxideâ€releasing molecule, cormâ€3 (ru(co) ₃ cl(glycinate)), targets respiration and oxidases in <i>campylobacter jejuni</i> , generating hydrogen peroxide. IUBMB Life, 2011, 63, 363-371.	3.4	38
71	Carbon Monoxide-Releasing Molecule (CORM-3) Prevents And Reverses Experimental Pulmonary Hypertension. , 2011, , .		0
72	Heme Oxygenase 1-Induced Resistance to Imatinib In Chronic Myelogenous Leukemia Cells. Blood, 2011, 118, 4410-4410.	1.4	0

#	Article	IF	CITATIONS
73	CO Liberated From a Carbon Monoxide-Releasing Molecule Exerts a Positive Inotropic Effect in Doxorubicin-Induced Cardiomyopathy. Journal of Cardiovascular Pharmacology, 2010, 55, 168-175.	1.9	10
74	Induction of heme oxygenase-1 in factor VIII–deficient mice reduces the immune response to therapeutic factor VIII. Blood, 2010, 115, 2682-2685.	1.4	28
75	Morphine-Induced Ocular Hypotension Is Modulated by Nitric Oxide and Carbon Monoxide: Role of μ ₃ Receptors. Journal of Ocular Pharmacology and Therapeutics, 2010, 26, 31-36.	1.4	18
76	The therapeutic potential of carbon monoxide. Nature Reviews Drug Discovery, 2010, 9, 728-743.	46.4	1,304
77	Human Sickle Cell Blood Modulates Endothelial Heme Oxygenase Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 305-312.	2.4	25
78	Relationship Between Leukocyte Kinetics and Behavioral Tests Changes in the Inflammatory Process of Hemorrhagic Stroke Recovery. International Journal of Neuroscience, 2010, 120, 765-773.	1.6	17
79	Hemin prevents in-stent stenosis in rat and rabbit models by inducing heme-oxygenase-1. Journal of Vascular Surgery, 2010, 51, 417-428.	1.1	31
80	Iron indenyl carbonyl compounds: CO-releasing molecules. Dalton Transactions, 2010, 39, 8967.	3.3	40
81	Polyamine Conjugation of Curcumin Analogues toward the Discovery of Mitochondria-Directed Neuroprotective Agents. Journal of Medicinal Chemistry, 2010, 53, 7264-7268.	6.4	40
82	The CO-releasing molecule CORM-3 protects against articular degradation in the K/BxN serum transfer arthritis model. European Journal of Pharmacology, 2010, 634, 184-191.	3.5	35
83	Syntheses, structural characterization and CO releasing properties of boranocarbonate [H3BCO2H]â^' derivatives. Organic and Biomolecular Chemistry, 2010, 8, 4849.	2.8	70
84	Interaction of Carbon Monoxide with Transition Metals: Evolutionary Insights into Drug Target Discovery. Current Drug Targets, 2010, 11, 1595-1604.	2.1	47
85	Carbon Monoxide Rescues Mice from Lethal Sepsis by Supporting Mitochondrial Energetic Metabolism and Activating Mitochondrial Biogenesis. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 641-648.	2.5	171
86	Carbon Monoxide-releasing Antibacterial Molecules Target Respiration and Global Transcriptional Regulators. Journal of Biological Chemistry, 2009, 284, 4516-4524.	3.4	137
87	Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut, 2009, 58, 347-356.	12.1	107
88	Effects of carbon monoxide on trout and lamprey vessels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R141-R149.	1.8	14
89	Carbon Monoxide Rapidly Impairs Alveolar Fluid Clearance by Inhibiting Epithelial Sodium Channels. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 639-650.	2.9	58
90	A water-soluble carbon monoxide-releasing molecule (CORM-3) lowers intraocular pressure in rabbits. British Journal of Ophthalmology, 2009, 93, 254-257.	3.9	27

#	Article	IF	CITATIONS
91	Carbon Monoxide Inhibits TLR-Induced Dendritic Cell Immunogenicity. Journal of Immunology, 2009, 182, 1877-1884.	0.8	116
92	A carbon monoxideâ€releasing molecule (CORMâ€3) exerts bactericidal activity against <i>Pseudomonas aeruginosa</i> and improves survival in an animal model of bacteraemia. FASEB Journal, 2009, 23, 1023-1031.	0.5	136
93	Measuring left ventricular function in the normal, infarcted and CORM-3-preconditioned mouse heart using complex admittance-derived pressure volume loops. Journal of Pharmacological and Toxicological Methods, 2009, 59, 94-99.	0.7	27
94	In vitro and in vivo effects of the carbon monoxideâ€releasing molecule, CORMâ€3, in the xenogeneic pigâ€toâ€primate context. Xenotransplantation, 2009, 16, 99-114.	2.8	31
95	μ2-Alkyne dicobalt(0)hexacarbonyl complexes as carbon monoxide-releasing molecules (CO-RMs): probing the release mechanism. Dalton Transactions, 2009, , 3653.	3.3	79
96	Protective effects of a carbon monoxide-releasing molecule (CORM-3) during hepatic cold preservation. Cryobiology, 2009, 58, 248-255.	0.7	54
97	Carbon Monoxide in Biology and Microbiology: Surprising Roles for the "Detroit Perfume― Advances in Microbial Physiology, 2009, 56, 85-167.	2.4	34
98	Donor HO-1 Expression Inhibits Intimal Hyperplasia in Unmanipulated Graft Recipients: A Potential Role for CD8+ T-Cell Modulation by Carbon Monoxide. Transplantation, 2009, 88, 653-661.	1.0	18
99	Use of carbon monoxide as aÂtherapeutic agent: promises and challenges. Intensive Care Medicine, 2008, 34, 649-658.	8.2	754
100	A cytoprotective role for the heme oxygenaseâ€1/CO pathway during neural differentiation of human mesenchymal stem cells. Journal of Neuroscience Research, 2008, 86, 1927-1935.	2.9	30
101	Structureâ^ Activity Relationships of Methoxychalcones as Inducers of Heme Oxygenase-1. Chemical Research in Toxicology, 2008, 21, 1484-1494.	3.3	50
102	cGMP Produced by NO-Sensitive Guanylyl Cyclase Essentially Contributes to Inflammatory and Neuropathic Pain by Using Targets Different from cGMP-Dependent Protein Kinase I. Journal of Neuroscience, 2008, 28, 8568-8576.	3.6	94
103	Carbon Monoxide-Releasing Molecules: A Pharmacological Expedient to Counteract Inflammation. Current Pharmaceutical Design, 2008, 14, 465-472.	1.9	45
104	A carbon monoxideâ€releasing molecule (CORMâ€3) abrogates polymorphonuclear granulocyteâ€induced activation of endothelial cells and mast cells. FASEB Journal, 2008, 22, 3380-3388.	0.5	29
105	Derivatives of Sodium Boranocarbonate as Novel CO-Releasing Molecules (CO-RMs). Chimia, 2008, 62, 277.	0.6	22
106	Carbon Monoxide-Mediated Activation of Large-Conductance Calcium-Activated Potassium Channels Contributes to Mesenteric Vasodilatation in Cirrhotic Rats. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 187-194.	2.5	62
107	Curcumin reduces cold storage-induced damage in human cardiac myoblasts. Experimental and Molecular Medicine, 2007, 39, 139-148.	7.7	29
108	Mitochondrial and Cellular Heme-Dependent Proteins as Targets for the Bioactive Function of the Heme Oxygenase/Carbon Monoxide System. Antioxidants and Redox Signaling, 2007, 9, 2139-2156.	5.4	56

#	Article	IF	CITATIONS
109	Carbon Monoxide-Releasing Molecules Modulate Leukocyte-Endothelial Interactions under Flow. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 656-662.	2.5	84
110	Carbon monoxide-releasing molecules (CO-RMs): vasodilatory, anti-ischaemic and anti-inflammatory activities. Biochemical Society Transactions, 2007, 35, 1142-1146.	3.4	154
111	Beneficial effects of carbon monoxide-releasing molecules on post-ischemic myocardial recovery. Life Sciences, 2007, 80, 1619-1626.	4.3	49
112	Improved Myocardial Function After Cold Storage With Preservation Solution Supplemented With a Carbon Monoxide–Releasing Molecule (CORM-3). Journal of Heart and Lung Transplantation, 2007, 26, 1192-1198.	0.6	49
113	[(ÎC5H4R)Fe(CO)2X], X = Cl, Br, I, NO3, CO2Me and [(ÎC5H4R)Fe(CO)3]+, R = (CH2)nCO2Me (n = 0–2), and CO2CH2CH2OH: a new group of CO-releasing molecules. Dalton Transactions, 2007, , 4962.	3.3	59
114	Chemistry and biological activities of CO-releasing molecules (CORMs) and transition metal complexes. Dalton Transactions, 2007, , 1651.	3.3	174
115	CO and NO in medicine. Chemical Communications, 2007, , 4197.	4.1	153
116	Metal carbonyls as pharmaceuticals? [Ru(CO)3Cl(glycinate)], a CO-releasing molecule with an extensive aqueous solution chemistry. Dalton Transactions, 2007, , 1500.	3.3	153
117	Effectiveness of Novel Imidazole-Dioxolane Heme Oxygenase Inhibitors in Renal Proximal Tubule Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 763-770.	2.5	23
118	Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Annals of the Rheumatic Diseases, 2007, 67, 1211-1217.	0.9	78
119	η1-2-Pyrone metal carbonyl complexes as CO-releasing molecules (CO-RMs): A delicate balance between stability and CO liberation. Dalton Transactions, 2007, , 3603.	3.3	65
120	Carbon Monoxide Generated by Heme Oxygenase-1 Activity Confers Tolerogenic Capacity to Dendritic Cells. Clinical Immunology, 2007, 123, S181.	3.2	0
121	193 Carbon monoxide-mediated activation of large conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats with ascites. Journal of Hepatology, 2006, 44, S80.	3.7	0
122	Effects of a carbon monoxide-releasing molecule on postischemic cardiac recovery. Journal of Molecular and Cellular Cardiology, 2006, 40, 963.	1.9	0
123	Heme oxygenase-1 mediates the anti-inflammatory actions of 2′-hydroxychalcone in RAW 264.7 murine macrophages. American Journal of Physiology - Cell Physiology, 2006, 290, C1092-C1099.	4.6	71
124	Positive inotropic effects of carbon monoxideâ€releasing molecules (COâ€RMs) in the isolated perfused rat heart. British Journal of Pharmacology, 2006, 149, 1104-1112.	5.4	41
125	Treatment with CO-RMs during cold storage improves renal function at reperfusion. Kidney International, 2006, 69, 239-247.	5.2	114
126	η4-Pyrone iron(0)carbonyl complexes as effective CO-releasing molecules (CO-RMs). Bioorganic and Medicinal Chemistry Letters, 2006, 16, 995-998.	2.2	68

#	Article	IF	CITATIONS
127	Evaluation of the effects of a novel carbon monoxide releasing molecule (CORM-3) in an in vitro model of cardiovascular inflammation Inflammation Research, 2006, 55, S05-S06.	4.0	9
128	CO–metal interaction: vital signaling from a lethal gas. Trends in Biochemical Sciences, 2006, 31, 614-621.	7.5	164
129	Protection against cisplatin-induced nephrotoxicity by a carbon monoxide-releasing molecule. American Journal of Physiology - Renal Physiology, 2006, 290, F789-F794.	2.7	117
130	Carbon monoxide released by CORM-3 inhibits human platelets by a mechanism independent of soluble guanylate cyclase. Cardiovascular Research, 2006, 71, 393-401.	3.8	94
131	Bioactive Properties of Iron-Containing Carbon Monoxide-Releasing Molecules. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 403-410.	2.5	76
132	Modulation of Thrombin-Induced Neuroinflammation in BV-2 Microglia by Carbon Monoxide-Releasing Molecule 3. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1315-1322.	2.5	78
133	Role of Carbon Monoxide and Biliverdin in Renal Ischemia/Reperfusion Injury. Nephron Experimental Nephrology, 2006, 104, e135-e139.	2.2	20
134	The Interaction of Nitric Oxide with Distinct Hemoglobins Differentially Amplifies Endothelial Heme Uptake and Heme Oxygenase-1 Expression. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1125-1133.	2.5	20
135	A carbon monoxide-releasing molecule (CORM-3) attenuates lipopolysaccharide- and interferon-gamma-induced inflammation in microglia. Pharmacological Reports, 2006, 58 Suppl, 132-44.	3.3	14
136	Carbon monoxideâ€releasing molecules (COâ€RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. British Journal of Pharmacology, 2005, 145, 800-810.	5.4	344
137	Mitochondrial Respiratory Chain and NAD(P)H Oxidase Are Targets for theAntiproliferative Effect of Carbon Monoxide in Human Airway SmoothMuscle. Journal of Biological Chemistry, 2005, 280, 25350-25360.	3.4	220
138	CORMâ€A1: a new pharmacologically active carbon monoxideâ€releasing molecule. FASEB Journal, 2005, 19, 1-24.	0.5	331
139	Therapeutic applications of carbon monoxide-releasing molecules. Expert Opinion on Investigational Drugs, 2005, 14, 1305-1318.	4.1	261
140	Bilirubin decreases NOS2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. FASEB Journal, 2005, 19, 1890-1892.	0.5	230
141	Differential Activation of Heme Oxygenase-1 by Chalcones and Rosolic Acid in Endothelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 686-693.	2.5	96
142	Administration of a CO-releasing molecule induces late preconditioning against myocardial infarction. Journal of Molecular and Cellular Cardiology, 2005, 38, 127-134.	1.9	137
143	Generation of bile pigments by haem oxygenase: a refined cellular strategy in response to stressful insults. Biochemical Society Symposia, 2004, 71, 177-192.	2.7	60
144	Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1649-H1653.	3.2	193

#	Article	IF	CITATIONS
145	Vasoactive properties of CORMâ€3, a novel waterâ€soluble carbon monoxideâ€releasing molecule. British Journal of Pharmacology, 2004, 142, 453-460.	5.4	263
146	Cardioprotective Actions by a Water-Soluble Carbon Monoxide–Releasing Molecule. Circulation Research, 2003, 93, e2-8.	4.5	596
147	Nitric oxide synthase type I (nNOS), vascular endothelial growth factor (VEGF) and myoglobin-like expression in skeletal muscle of Antarctic icefishes (Notothenioidei: Channichthyidae). Polar Biology, 2003, 26, 458-462.	1.2	16
148	Bilirubin and S-nitrosothiols interaction: evidence for a possible role of bilirubin as a scavenger of nitric oxide. Biochemical Pharmacology, 2003, 66, 2355-2363.	4.4	93
149	Heme oxygenase is expressed in human pulmonary artery smooth muscle where carbon monoxide has an anti-proliferative role. European Journal of Pharmacology, 2003, 473, 135-141.	3.5	34
150	Metal Carbonyls: A New Class of Pharmaceuticals?. ChemInform, 2003, 34, no.	0.0	0
151	Metal Carbonyls: A New Class of Pharmaceuticals?. Angewandte Chemie - International Edition, 2003, 42, 3722-3729.	13.8	239
152	Heme Oxygenase and Angiogenic Activity of Endothelial Cells: Stimulation by Carbon Monoxide and Inhibition by Tin Protoporphyrin-IX. Antioxidants and Redox Signaling, 2003, 5, 155-162.	5.4	182
153	Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Letters, 2003, 543, 113-119.	2.8	167
154	Changes in temperature modulate heme oxygenase-1 induction by curcumin in renal epithelial cells. Biochemical and Biophysical Research Communications, 2003, 308, 950-955.	2.1	43
155	Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochemical Journal, 2003, 371, 887-895.	3.7	932
156	Haem and nitric oxide: synergism in the modulation of the endothelial haem oxygenase-1 pathway. Biochemical Journal, 2003, 372, 381-390.	3.7	62
157	Bioactivity and Pharmacological Actions of Carbon Monoxide-Releasing Molecules. Current Pharmaceutical Design, 2003, 9, 2525-2539.	1.9	235
158	Vasorelaxant properties of CORM-3, a new water-soluble carbon monoxide-releasing molecule. BMC News and Views, 2003, 3, .	0.0	0
159	Carbon Monoxide-Releasing Molecules. Circulation Research, 2002, 90, E17-24.	4.5	875
160	Induction of Heme Oxygenase 1 by Nitrosative Stress. Journal of Biological Chemistry, 2002, 277, 40666-40674.	3.4	99
161	Regulation of Heme Oxygenase-1 by Redox Signals Involving Nitric Oxide. Antioxidants and Redox Signaling, 2002, 4, 615-624.	5.4	140
162	Heme Oxygenase Activity Modulates Vascular Endothelial Growth Factor Synthesis in Vascular Smooth Muscle Cells. Antioxidants and Redox Signaling, 2002, 4, 229-240.	5.4	165

#	Article	IF	CITATIONS
163	Caffeic Acid Phenethyl Ester and Curcumin: A Novel Class of Heme Oxygenase-1 Inducers. Molecular Pharmacology, 2002, 61, 554-561.	2.3	288
164	Carbon Monoxide and Iron, by-Products of Heme Oxygenase, Modulate Vascular Endothelial Growth Factor Synthesis in Vascular Smooth Muscle Cells. , 2002, , 97-107.		2
165	Heme Oxygenase in Skeletal Muscle. , 2002, , 205-213.		0
166	Heme Oxygenase and the Novel Tumour-Specific Anti-Vascular Compound Combretastatin A4-Phosphate. , 2002, , 303-312.		0
167	Homocysteine attenuates endothelial haem oxygenase-1 induction by nitric oxide (NO) and hypoxia. FEBS Letters, 2001, 508, 403-406.	2.8	37
168	Role of heme oxygenase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1976-H1984.	3.2	86
169	Protective Role of Heme Oxygenases against Endotoxin-induced Diaphragmatic Dysfunction in Rats. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 753-761.	5.6	65
170	Studies on the Development of Carbon Monoxide-Releasing Molecules. , 2001, , 249-271.		5
171	Nitric Oxide and the Heme Oxygenase/Carbon Monoxide System. , 2001, , 111-124.		1
172	Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochemical Journal, 2000, 348, 615.	3.7	99
173	Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochemical Journal, 2000, 348, 615-619.	3.7	277
174	Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biology and Medicine, 2000, 28, 1303-1312.	2.9	721
175	Endothelial Heme Oxygenase-1 Induction by Hypoxia. Journal of Biological Chemistry, 2000, 275, 13613-13620.	3.4	241
176	Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H643-H651.	3.2	326
177	RELATIONSIIIP BETWEEN NITRIC OXIDE, CARBON MONOXIDE AND VASCULAR ENDOTHELIAL GROWTII FACTOR SYNTHESIS BY VASCULAR SMOOTII MUSCLE CELLS IN NORMOXIC AND IIYPOXIC CONDITIONS. Shock, 1999, 12, 45.	2.1	0
178	The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radical Research, 1999, 31, 459-475.	3.3	249
179	Fibre type specificity of haem oxygenase-1 induction in rat skeletal muscle. FEBS Letters, 1999, 458, 257-260.	2.8	21
180	Peroxynitrite induces haem oxygenase-1 in vascular endothelial cells: a link to apoptosis. Biochemical Journal, 1999, 339, 729.	3.7	78

#	Article	IF	CITATIONS
181	Peroxynitrite induces haem oxygenase-1 in vascular endothelial cells: a link to apoptosis. Biochemical Journal, 1999, 339, 729-736.	3.7	177
182	Carbon monoxide is a major contributor to the regulation of vascular tone in aortas expressing high levels of haeme oxygenaseâ€1. British Journal of Pharmacology, 1998, 125, 1437-1444.	5.4	209
183	The comparative effects of the NOS inhibitor, nï‰-nitro-l-arginine, and the haemoxygenase inhibitor, zinc protoporphyrin IX, on tumour blood flow. International Journal of Radiation Oncology Biology Physics, 1998, 42, 849-853.	0.8	29
184	Heme Oxygenase-1–Derived Carbon Monoxide Contributes to the Suppression of Acute Hypertensive Responses In Vivo. Circulation Research, 1998, 83, 568-577.	4.5	270
185	Depression of endothelial and smooth muscle cell oxygen consumption by endotoxin. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H776-H782.	3.2	21
186	Thiol Compounds Interact with Nitric Oxide in Regulating Heme Oxygenase-1 Induction in Endothelial Cells. Journal of Biological Chemistry, 1997, 272, 18411-18417.	3.4	280
187	Cyclophilins Are Induced by Hypoxia and Heat Stress in Myogenic Cells. Biochemical and Biophysical Research Communications, 1997, 237, 6-9.	2.1	13
188	Involvement of the Heme Oxygenase–Carbon Monoxide Pathway in Keratinocyte Proliferation. Biochemical and Biophysical Research Communications, 1997, 241, 215-220.	2.1	64
189	A Precursor of the Nitric Oxide Donor SIN-1 Modulates the Stress Protein Heme Oxygenase-1 in Rat Liver. Biochemical and Biophysical Research Communications, 1996, 225, 167-172.	2.1	56
190	Hemoglobin-nitric oxide interaction and its implications. Transfusion Medicine Reviews, 1996, 10, 77-84.	2.0	29
191	Interaction of Hemoglobin with Nitric Oxide and Carbon Monoxide: Physiological Implications. , 1996, , 74-98.		7
192	The Autoxidation of αα Cross-Linked Hemoglobin: A Possible Role in the Oxidative Stress to Endothelium. Artificial Cells, Blood Substitutes, and Biotechnology, 1995, 23, 291-301.	0.9	14
193	Myocardial metabolism and function in acutely ischemic and hypoxemic isolated rat hearts. Journal of Molecular and Cellular Cardiology, 1995, 27, 1213-1218.	1.9	16
194	Oxidative injury in reoxygenated and reperfused heartsâ~†. Free Radical Biology and Medicine, 1994, 16, 255-262.	2.9	34
195	Vasoconstrictor Effects in Isolated Rabbit Heart Perfused with Bis(3,5-Dibromosalicyl) Fumarate Cross-Linked Hemoglobin (ααhb). Artificial Cells, Blood Substitutes, and Biotechnology, 1994, 22, 565-575.	0.9	19
196	Enhanced Oxidation of Bis(3,5-Dibromosalicyl) Fumarate α-α Cross Unked Hemoglobin by Free Radicals Generated by Xanthine/Xanthine Oxidase. Artificial Cells, Blood Substitutes, and Biotechnology, 1994, 22, 517-524.	0.9	2
197	Ischaemia/reperfusion in the posthypoxaemic re-oxygenated myocardium: haemodynamic study in the isolated perfused rat heart. Perfusion (United Kingdom), 1993, 8, 113-118.	1.0	9
198	Cell-free hemoglobin potentiates acetylcholine-induced coronary vasoconstriction in rabbit hearts. Journal of Applied Physiology, 1993, 75, 2224-2233.	2.5	49

ROBERTO A MOTTERLINI

#	Article	IF	CITATIONS
199	Functional and metabolic effects of propionyl-L-carnitine in the isolated perfused hypertrophied rat heart. Molecular and Cellular Biochemistry, 1992, 116, 139-145.	3.1	31
200	Early recognition of a discordant xenogeneic organ by human circulating lymphocytes. Journal of Immunology, 1992, 149, 1416-23.	0.8	82
201	Dual role of hypoxanthine in the reoxygenation of hypoxic isolated rat hearts. Journal of Molecular and Cellular Cardiology, 1991, 23, 77-82.	1.9	8
202	The Relationship Between the Blood Oxygen Transport and the Human Red Cell Aging Process. Advances in Experimental Medicine and Biology, 1991, 307, 115-123.	1.6	12
203	Red cell aging and active calcium transport. Experimental Gerontology, 1990, 25, 279-286.	2.8	15
204	Human red cell age, oxygen affinity and oxygen transport. Respiration Physiology, 1990, 79, 69-79.	2.7	16
205	CORM-401, an orally active carbon monoxide-releasing molecule, increases body temperature by activating non-shivering thermogenesis in rats. Temperature, 0, , 1-8.	3.0	1