
Flavia Bazzoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/846414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Long Non-Coding RNAs in Systemic Sclerosis Monocytes: A Potential Role for PSMB8-AS1 in Altered Cytokine Secretion. International Journal of Molecular Sciences, 2021, 22, 4365.	4.1	10
2	Impact of Sex on Circulating Leukocytes Composition in COPD Patients. International Journal of COPD, 2021, Volume 16, 3539-3550.	2.3	1
3	Editorial: Regulation of Soluble Immune Mediators by Non-Coding RNAs. Frontiers in Immunology, 2020, 11, 607222.	4.8	1
4	ldentification of a <i>miR-146b</i> -Fas ligand axis in the development of neutropenia in T large granular lymphocyte leukemia. Haematologica, 2020, 105, 1351-1360.	3.5	28
5	Fast and Accurate Quantitative Analysis of Cytokine Gene Expression in Human Neutrophils by Reverse Transcription Real-Time PCR. Methods in Molecular Biology, 2020, 2087, 243-260.	0.9	7
6	Neutrophil-derived miR-223 as local biomarker of bacterial peritonitis. Scientific Reports, 2019, 9, 10136.	3.3	28
7	Histone modifications underlie monocyte dysregulation in patients with systemic sclerosis, underlining the treatment potential of epigenetic targeting. Annals of the Rheumatic Diseases, 2019, 78, 529-538.	0.9	40
8	The Long Non-coding RNA NRIR Drives IFN-Response in Monocytes: Implication for Systemic Sclerosis. Frontiers in Immunology, 2019, 10, 100.	4.8	58
9	UniVax Day 2018 ―Outreach to high school students to improve vaccination rates. European Journal of Immunology, 2018, 48, 1266-1268.	2.9	1
10	Multi-Step Regulation of the TLR4 Pathway by the miR-125a~99b~let-7e Cluster. Frontiers in Immunology, 2018, 9, 2037.	4.8	40
11	Insights into the Molecular Mechanism Accounting for Neutropenia in T-Large Granular Lymphocytes Leukemia. Blood, 2018, 132, 1575-1575.	1.4	0
12	Cancer-related CD15/FUT4 overexpression decreases benefit to agents targeting EGFR or VEGF acting as a novel RAF-MEK-ERK kinase downstream regulator in metastatic colorectal cancer. Journal of Experimental and Clinical Cancer Research, 2015, 34, 108.	8.6	54
13	Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils. Nature Communications, 2015, 6, 6061.	12.8	87
14	IL-10 disrupts the Brd4-docking sites to inhibit LPS-induced CXCL8 and TNF-α expression in monocytes: Implications for chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2015, 136, 781-791.e9.	2.9	27
15	Identification of a STAT3-miRNA Axis in T-LGL Leukemia. Blood, 2015, 126, 2671-2671.	1.4	0
16	Fast and Accurate Quantitative Analysis of Cytokine Gene Expression in Human Neutrophils. Methods in Molecular Biology, 2014, 1124, 451-467.	0.9	19
17	Optimizing the purification and analysis of miRNAs from urinary exosomes. Clinical Chemistry and Laboratory Medicine, 2014, 52, 345-354.	2.3	48
18	Negative regulation of Toll-like receptor 4 signaling by IL-10–dependent microRNA-146b. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11499-11504.	7.1	270

Flavia Bazzoni

#	Article	IF	CITATIONS
19	Cutting Edge: An Inactive Chromatin Configuration at the IL-10 Locus in Human Neutrophils. Journal of Immunology, 2013, 190, 1921-1925.	0.8	59
20	IL-10–induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3101-10.	7.1	191
21	IFN-β Expression Is Directly Activated in Human Neutrophils Transfected with Plasmid DNA and Is Further Increased via TLR-4–Mediated Signaling. Journal of Immunology, 2012, 189, 1500-1509.	0.8	35
22	Failure to detect production of IL-10 by activated human neutrophils. Nature Immunology, 2011, 12, 1017-1018.	14.5	70
23	Nonâ€food/feed seeds as biofactories for the highâ€yield production of recombinant pharmaceuticals. Plant Biotechnology Journal, 2011, 9, 911-921.	8.3	48
24	Severe impairment of IFN-Î ³ and IFN-α responses in cells of a patient with a novel STAT1 splicing mutation. Blood, 2011, 118, 1806-1817.	1.4	84
25	SH2â€domain mutations in <i>STAT3</i> in hyperâ€lgE syndrome patients result in impairment of ILâ€10 function. European Journal of Immunology, 2011, 41, 3075-3084.	2.9	26
26	Understanding the molecular mechanisms of the multifaceted ILâ€10â€mediated antiâ€inflammatory response: Lessons from neutrophils. European Journal of Immunology, 2010, 40, 2360-2368.	2.9	112
27	Uncovering an ILâ€10â€dependent NFâ€KB recruitment to the ILâ€1ra promoter that is impaired in STAT3 functionally defective patients. FASEB Journal, 2010, 24, 1365-1375.	0.5	45
28	Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5282-5287.	7.1	515
29	Viral and murine interleukin-10 are correctly processed and retain their biological activity when produced in tobacco. BMC Biotechnology, 2009, 9, 22.	3.3	30
30	Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunology Letters, 2008, 116, 1-6.	2.5	139
31	Activation of an Immunoregulatory and Antiviral Gene Expression Program in Poly(I:C)-Transfected Human Neutrophils. Journal of Immunology, 2008, 181, 6563-6573.	0.8	99
32	Circulating neutrophils of septic patients constitutively express IL-10R1 and are promptly responsive to IL-10. International Immunology, 2008, 20, 535-541.	4.0	26
33	Molecular mechanisms underlying the synergistic induction of CXCL10 by LPS and IFNâ€Î³ in human neutrophils. European Journal of Immunology, 2007, 37, 2627-2634.	2.9	51
34	ILâ€10 modulates cytokine gene transcription by protein synthesisâ€independent and dependent mechanisms in lipopolysaccharideâ€ŧreated neutrophils. European Journal of Immunology, 2007, 37, 3176-3189.	2.9	25
35	Fast and Accurate Quantitative Analysis of Cytokine Gene Expression in Human Neutrophils by Reverse Transcription Real-Time PCR. Methods in Molecular Biology, 2007, 412, 455-471.	0.9	11
36	Lipopolysaccharide primes neutrophils for a rapid response to IL-10. European Journal of Immunology, 2005, 35, 1877-1885.	2.9	30

Flavia Bazzoni

#	Article	IF	CITATIONS
37	Distinct Transcriptional Programs Activated by Interleukin-10 with or without Lipopolysaccharide in Dendritic Cells: Induction of the B Cell-Activating Chemokine, CXC Chemokine Ligand 13. Journal of Immunology, 2004, 172, 7031-7042.	0.8	113
38	Analysis of SOCS-3 Promoter Responses to Interferon Î ³ . Journal of Biological Chemistry, 2004, 279, 13746-13754.	3.4	63
39	Involvement of Suppressor of Cytokine Signaling-3 as a Mediator of the Inhibitory Effects of IL-10 on Lipopolysaccharide-Induced Macrophage Activation. Journal of Immunology, 2002, 168, 6404-6411.	0.8	256
40	Interleukin-10 and cAMP-elevating agents cooperate to induce suppressor of cytokine signaling-3 via a protein kinase A-independent signal. European Cytokine Network, 2002, 13, 47-53.	2.0	25
41	The neutrophil as a cellular source of chemokines. Immunological Reviews, 2000, 177, 195-203.	6.0	677
42	Identification of novel polymorphisms in the human TNFR1 gene: distribution in acute leukemia patients and healthy individuals. Immunogenetics, 2000, 51, 159-163.	2.4	12
43	Analysis of the Bak protein expression in human polymorphonuclear neutrophils. International Journal of Clinical and Laboratory Research, 1999, 29, 41-45.	1.0	11
44	TNF, Apoptosis and Autoimmunity: A Common Thread?. Blood Cells, Molecules, and Diseases, 1998, 24, 216-230.	1.4	80
45	The Tumor Necrosis Factor Ligand and Receptor Families. New England Journal of Medicine, 1996, 334, 1717-1725.	27.0	1,144
46	Chimeric tumor necrosis factor receptors with constitutive signaling activity Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5376-5380.	7.1	37
47	Analysis of tumor necrosis factor promoter responses to ultraviolet light Journal of Clinical Investigation, 1994, 93, 56-62.	8.2	43
48	Phagocytosis of Opsonized Yeast Induces Tumor Necrosis Factor-α mRNA Accumulation and Protein Release by Human Polymorphonuclear Leukocytes. Journal of Leukocyte Biology, 1991, 50, 223-228.	3.3	79
49	Studies on the gene expression of several NADPH oxidase components. Biochemical Society Transactions, 1991, 19, 63-67.	3.4	19
50	Amiloride does not influence the capability of interferon gamma to potentiate superoxide anion and hydrogen peroxide release by human mononuclear phagocytes. Immunology Letters, 1991, 28, 1-4.	2.5	1
51	Phagocytosing neutrophils produce and release high amounts of the neutrophil-activating peptide 1/interleukin 8 Journal of Experimental Medicine, 1991, 173, 771-774.	8.5	435
52	Interferon gamma induces in human neutrophils and macrophages expression of the mRNA for the high affinity receptor for monomeric IgG (Fcl³R-I or CD64). Biochemical and Biophysical Research Communications, 1990, 170, 582-588.	2.1	59
53	Isolation and characterization of a cDNA clone for a novel serine-rich neutrophil protein. Biochemical and Biophysical Research Communications, 1990, 170, 915-922.	2.1	8
54	Genetic Defects of Phagocyte Nadph Oxidase Activity and Activation. International Journal of Immunopathology and Pharmacology, 1989, 2, 75-86.	2.1	0