
Thomas Boller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/846394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396, 69-72.	27.8	2,907
2	A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 2009, 60, 379-406.	18.7	2,714
3	MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415, 977-983.	27.8	2,407
4	FLS2. Molecular Cell, 2000, 5, 1003-1011.	9.7	1,968
5	Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation. Cell, 2006, 125, 749-760.	28.9	1,658
6	A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448, 497-500.	27.8	1,619
7	Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 2004, 428, 764-767.	27.8	1,487
8	Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal, 1999, 18, 265-276.	5.7	1,376
9	Antifungal Hydrolases in Pea Tissue. Plant Physiology, 1988, 88, 936-942.	4.8	1,120
10	Innate Immunity in Plants: An Arms Race Between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens. Science, 2009, 324, 742-744.	12.6	902
11	Plant chitinases are potent inhibitors of fungal growth. Nature, 1986, 324, 365-367.	27.8	871
12	The N Terminus of Bacterial Elongation Factor Tu Elicits Innate Immunity in Arabidopsis Plants. Plant Cell, 2004, 16, 3496-3507.	6.6	780
13	The Arabidopsis Receptor Kinase FLS2 Binds flg22 and Determines the Specificity of Flagellin Perception. Plant Cell, 2006, 18, 465-476.	6.6	698
14	Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 1983, 157, 22-31.	3.2	649
15	Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes and Development, 2006, 20, 537-542.	5.9	649
16	DIFFERENT ARBUSCULAR MYCORRHIZAL FUNGAL SPECIES ARE POTENTIAL DETERMINANTS OF PLANT COMMUNITY STRUCTURE. Ecology, 1998, 79, 2082-2091.	3.2	623
17	Impact of Land Use Intensity on the Species Diversity of Arbuscular Mycorrhizal Fungi in Agroecosystems of Central Europe. Applied and Environmental Microbiology, 2003, 69, 2816-2824.	3.1	609
18	A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant Journal, 1999, 18, 277-284	5.7	603

#	Article	IF	CITATIONS
19	The Transcriptional Innate Immune Response to flg22. Interplay and Overlap with Avr Gene-Dependent Defense Responses and Bacterial Pathogenesis. Plant Physiology, 2004, 135, 1113-1128.	4.8	562
20	Hydrolytic Enzymes in the Central Vacuole of Plant Cells. Plant Physiology, 1979, 63, 1123-1132.	4.8	521
21	Flagellin perception: a paradigm for innate immunity. Trends in Plant Science, 2002, 7, 251-256.	8.8	488
22	Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta, 1979, 145, 293-303.	3.2	461
23	Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia, 2004, 138, 574-583.	2.0	457
24	Chemoperception of Microbial Signals in Plant Cells. Annual Review of Plant Biology, 1995, 46, 189-214.	14.3	440
25	Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant Journal, 1993, 4, 307-316.	5.7	422
26	Plant Pattern-Recognition Receptor FLS2 Is Directed for Degradation by the Bacterial Ubiquitin Ligase AvrPtoB. Current Biology, 2008, 18, 1824-1832.	3.9	400
27	Rapid Heteromerization and Phosphorylation of Ligand-activated Plant Transmembrane Receptors and Their Associated Kinase BAK1. Journal of Biological Chemistry, 2010, 285, 9444-9451.	3.4	387
28	Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environmental Microbiology, 2011, 13, 3047-3058.	3.8	343
29	The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 2006, 172, 739-752.	7.3	336
30	Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade Â. Plant Physiology, 2012, 159, 789-797.	4.8	332
31	Both the Extracellular Leucine-Rich Repeat Domain and the Kinase Activity of FLS2 Are Required for Flagellin Binding and Signaling in Arabidopsis. Plant Cell, 2001, 13, 1155-1163.	6.6	327
32	Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist, 2005, 165, 273-283.	7.3	325
33	Perception of the Arabidopsis Danger Signal Peptide 1 Involves the Pattern Recognition Receptor AtPEPR1 and Its Close Homologue AtPEPR2. Journal of Biological Chemistry, 2010, 285, 13471-13479.	3.4	317
34	A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10362-10366.	7.1	316
35	Ethylene: Symptom, Not Signal for the Induction of Chitinase and β-1,3-Glucanase in Pea Pods by Pathogens and Elicitors. Plant Physiology, 1984, 76, 607-611.	4.8	305
36	Antifungal Hydrolases in Pea Tissue. Plant Physiology, 1988, 87, 325-333.	4.8	304

#	Article	IF	CITATIONS
37	Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytologist, 1995, 130, 419-427.	7.3	304
38	The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. FEBS Journal, 1994, 219, 187-193.	0.2	295
39	Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10736-10741.	7.1	292
40	The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. FEBS Journal, 1994, 219, 179-186.	0.2	279
41	Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content inSaccharomyces cerevisiaecells subjected to temperature shifts. FEBS Letters, 1987, 220, 113-115.	2.8	278
42	Microbial Elicitors Induce Activation and Dual Phosphorylation of the Arabidopsis thaliana MAPK 6. Journal of Biological Chemistry, 2000, 275, 7521-7526.	3.4	276
43	Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8831-8834.	7.1	246
44	Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. , 2001, 46, 521-529.		237
45	Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-analysis. Frontiers in Plant Science, 2017, 8, 2204.	3.6	235
46	Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biology and Fertility of Soils, 2000, 31, 150-156.	4.3	229
47	Elicitation of Suspension-Cultured Tomato Cells Triggers the Formation of Phosphatidic Acid and Diacylglycerol Pyrophosphate. Plant Physiology, 2000, 123, 1507-1516.	4.8	221
48	Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. FEBS Journal, 1992, 209, 951-959.	0.2	218
49	Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant Journal, 2010, 62, 367-378.	5.7	215
50	Dynamics of Vacuolar Compartmentation. Annual Review of Plant Physiology, 1986, 37, 137-164.	10.9	214
51	Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. FEBS Journal, 1993, 212, 315-323.	0.2	213
52	Bacterial Polysaccharides Suppress Induced Innate Immunity by Calcium Chelation. Current Biology, 2008, 18, 1078-1083.	3.9	212
53	Colorimetric assay for chitinase. Methods in Enzymology, 1988, , 430-435.	1.0	203
54	Molecular Sensing of Bacteria in Plants. Journal of Biological Chemistry, 2003, 278, 6201-6208.	3.4	200

#	Article	IF	CITATIONS
55	Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans. Plant Physiology, 1995, 108, 1519-1525.	4.8	199
56	<i>Saccharomyces cerevisiae</i> cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes and Development, 1998, 12, 2943-2955.	5.9	197
57	Directed Proteomics Identifies a Plant-Specific Protein Rapidly Phosphorylated in Response to Bacterial and Fungal Elicitors. Plant Cell, 2001, 13, 1467-1475.	6.6	197
58	Trehalose and trehalase in plants: recent developments. Plant Science, 1995, 112, 1-9.	3.6	192
59	Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11034-11039.	7.1	188
60	The Lectin Receptor Kinase-VI.2 Is Required for Priming and Positively Regulates <i>Arabidopsis</i> Pattern-Triggered Immunity. Plant Cell, 2012, 24, 1256-1270.	6.6	186
61	Doubleâ€stranded <scp>RNA</scp> s induce a patternâ€triggered immune signaling pathway in plants. New Phytologist, 2016, 211, 1008-1019.	7.3	186
62	Directed Proteomics Identifies a Plant-Specific Protein Rapidly Phosphorylated in Response to Bacterial and Fungal Elicitors. Plant Cell, 2001, 13, 1467-1475.	6.6	182
63	Purification, cloning, and functional expression of sucrose:fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11652-11656.	7.1	178
64	Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta, 1999, 208, 319-325.	3.2	178
65	Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Molecular Biology, 2007, 64, 539-547.	3.9	174
66	Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agriculture, Ecosystems and Environment, 2009, 134, 257-268.	5.3	174
67	Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta, 1989, 177, 447-455.	3.2	171
68	Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2196-2200.	7.1	171
69	Trehaloseâ€6â€phosphate phosphatases fromArabidopsis thaliana: identification by functional complementation of the yeasttps2mutant. Plant Journal, 1998, 13, 673-683.	5.7	170
70	Damage on plants activates Ca ²⁺ -dependent metacaspases for release of immunomodulatory peptides. Science, 2019, 363, .	12.6	170
71	Trehalose Induces the ADP-Glucose Pyrophosphorylase Gene,ApL3, and Starch Synthesis in Arabidopsis. Plant Physiology, 2000, 124, 105-114.	4.8	168
72	Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Research, 2008, 36, 6429-6438.	14.5	168

#	Article	IF	CITATIONS
73	Chitinase cDNA Cloning and mRNA Induction by Fungal Elicitor, Wounding, and Infection. Plant Physiology, 1988, 86, 182-186.	4.8	165
74	Sensitivity of Different Ecotypes and Mutants ofArabidopsis thaliana toward the Bacterial Elicitor Flagellin Correlates with the Presence of Receptor-binding Sites. Journal of Biological Chemistry, 2001, 276, 45669-45676.	3.4	164
75	Large-Scale Gene Discovery in the Oomycete Phytophthora infestans Reveals Likely Components of Phytopathogenicity Shared with True Fungi. Molecular Plant-Microbe Interactions, 2005, 18, 229-243.	2.6	160
76	Trehalose and Trehalase in Arabidopsis. Plant Physiology, 2001, 125, 1086-1093.	4.8	159
77	Differential Expression of Eight Chitinase Genes in Medicago truncatula Roots During Mycorrhiza Formation, Nodulation, and Pathogen Infection. Molecular Plant-Microbe Interactions, 2000, 13, 763-777.	2.6	158
78	Induction of Trehalase in Arabidopsis Plants Infected With the Trehalose-Producing Pathogen Plasmodiophora brassicae. Molecular Plant-Microbe Interactions, 2002, 15, 693-700.	2.6	151
79	The protein phosphatase inhibitor calyculin A mimics elicitor action in plant cells and induces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with [33P]phosphate Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 952-956.	7.1	150
80	Regulation of wound ethylene synthesis in plants. Nature, 1980, 286, 259-260.	27.8	147
81	Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant Journal, 1995, 7, 381-389.	5.7	147
82	The N-Terminal Cysteine-Rich Domain of Tobacco Class I Chitinase Is Essential for Chitin Binding but Not for Catalytic or Antifungal Activity. Plant Physiology, 1993, 103, 221-226.	4.8	146
83	The family of ammonium transporters (<scp>AMT</scp>) in <i><scp>S</scp>orghum bicolor</i> : two <scp>AMT</scp> members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytologist, 2013, 198, 853-865.	7.3	146
84	Lyso-Phosphatidylcholine Is a Signal in the Arbuscular Mycorrhizal Symbiosis. Science, 2007, 318, 265-268.	12.6	145
85	Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine ammonia-lyase. Planta, 1984, 161, 475-480.	3.2	143
86	Differential Activation of Four Specific MAPK Pathways by Distinct Elicitors. Journal of Biological Chemistry, 2000, 275, 36734-36740.	3.4	142
87	Wound ethylene and 1-aminocyclopropane-1-carboxylate synthase in ripening tomato fruit. Planta, 1981, 151, 476-481.	3.2	141
88	The Immunity Regulator <i>BAK1</i> Contributes to Resistance Against Diverse RNA Viruses. Molecular Plant-Microbe Interactions, 2013, 26, 1271-1280.	2.6	141
89	Perception of Fungal Sterols in Plants (Subnanomolar Concentrations of Ergosterol Elicit) Tj ETQq1 1 0.784314	4 rgBT /Ove 4.8	rlock 10 Tf 5 140
90	The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses. Journal of Experimental Botany, 2013, 64, 5309-5321.	4.8	140

#	Article	IF	CITATIONS
91	Functional diversity in arbuscular mycorrhiza – the role ofÂgene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology, 2010, 3, 1-8.	1.6	139
92	Elicitor-Induced Ethylene Biosynthesis in Tomato Cells. Plant Physiology, 1991, 97, 19-25.	4.8	138
93	Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytologist, 2000, 146, 155-161.	7.3	134
94	Vacuolar Localization of Ethylene-Induced Chitinase in Bean Leaves. Plant Physiology, 1984, 74, 442-444.	4.8	132
95	Co-ordinated regulation of chitinase and β-1,3-glucanase in bean leaves. Planta, 1988, 174, 364-372.	3.2	131
96	Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. Journal of Experimental Botany, 2012, 63, 393-401.	4.8	130
97	The Apparent Turnover of 1-Aminocyclopropane-1-Carboxylate Synthase in Tomato Cells Is Regulated by Protein Phosphorylation and Dephosphorylation. Plant Physiology, 1994, 106, 529-535.	4.8	127
98	The Plant Wound Hormone Systemin Binds with the N-Terminal Part to Its Receptor but Needs the C-Terminal Part to Activate It. Plant Cell, 1998, 10, 1561-1570.	6.6	124
99	Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehaloseâ€6â€phosphate synthase homologues. Journal of Experimental Botany, 2001, 52, 1817-1826.	4.8	121
100	The Enzymatic Activity of Fungal Xylanase Is Not Necessary for Its Elicitor Activity. Plant Physiology, 1999, 121, 391-398.	4.8	119
101	Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22522-22527.	7.1	119
102	Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytologist, 2015, 205, 1632-1645.	7.3	119
103	Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. Journal of Experimental Botany, 2015, 66, 5183-5193.	4.8	119
104	Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with β-glucan or chitin elicitors. Planta, 1999, 207, 566-574.	3.2	110
105	Correlation of trenalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant?. FEBS Letters, 1989, 255, 431-434.	2.8	109
106	Plant chitinases use two different hydrolytic mechanisms. FEBS Letters, 1996, 382, 186-188.	2.8	109
107	Functional Analysis of NopM, a Novel E3 Ubiquitin Ligase (NEL) Domain Effector of Rhizobium sp. Strain NGR234. PLoS Pathogens, 2012, 8, e1002707.	4.7	109
108	The Bacterial Elicitor Flagellin Activates Its Receptor in Tomato Cells According to the Address–Message Concept. Plant Cell, 2000, 12, 1783-1794.	6.6	105

#	Article	IF	CITATIONS
109	Probing the <i>Arabidopsis</i> Flagellin Receptor: FLS2-FLS2 Association and the Contributions of Specific Domains to Signaling Function. Plant Cell, 2012, 24, 1096-1113.	6.6	104
110	Polybase induced lysis of yeast spheroplasts. Archives of Microbiology, 1975, 105, 319-327.	2.2	103
111	Characterization of a Specific Transport System for Arginine in Isolated Yeast Vacuoles. FEBS Journal, 1975, 54, 81-91.	0.2	101
112	Structural analysis of the subunits of the trehaloseâ€6â€phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Molecular Microbiology, 1997, 24, 687-696.	2.5	101
113	A Plasma Membrane Syntaxin Is Phosphorylated in Response to the Bacterial Elicitor Flagellin. Journal of Biological Chemistry, 2003, 278, 45248-45254.	3.4	101
114	Disaccharide-Mediated Regulation of Sucrose:Fructan-6-Fructosyltransferase, a Key Enzyme of Fructan Synthesis in Barley Leaves. Plant Physiology, 2000, 123, 265-274.	4.8	100
115	Inhibition of fungal growth by plant chitinases and?-1,3-glucanases. Protoplasma, 1992, 171, 34-43.	2.1	99
116	The <i><scp>P</scp>seudomonas</i> type <scp>III</scp> effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytologist, 2014, 201, 585-598.	7.3	99
117	Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiologia Plantarum, 1997, 100, 153-158.	5.2	98
118	Inulin synthesis by a combination of purified fructosyltransferases from tubers of Helianthus tuberosus. FEBS Letters, 1996, 385, 39-42.	2.8	96
119	Expression patterns of FLAGELLIN SENSING 2 map to bacterial entry sites in plant shoots and roots. Journal of Experimental Botany, 2014, 65, 6487-6498.	4.8	96
120	Ethylene Biosynthesis and Activities of Chitinase and ß-1,3-Glucanase in the Roots of Host and Non-Host Plants of Vesicular-Arbuscular Mycorrhizal Fungi after Inoculation with Glomus mosseae. Journal of Plant Physiology, 1994, 143, 337-343.	3.5	92
121	Viral protein suppresses oxidative burst and salicylic acidâ€dependent autophagy and facilitates bacterial growth on virusâ€infected plants. New Phytologist, 2016, 211, 1020-1034.	7.3	92
122	The Anticipation of Danger: Microbe-Associated Molecular Pattern Perception Enhances AtPep-Triggered Oxidative Burst Â. Plant Physiology, 2013, 161, 2023-2035.	4.8	88
123	Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space. Plant Journal, 1994, 5, 45-54.	5.7	87
124	K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Letters, 1990, 275, 177-180.	2.8	85
125	Cloning and disruption of a gene required for growth on acetate but not on ethanol: The acetyl-coenzyme a synthetase gene ofSaccharmoyces cerevisiae. Yeast, 1992, 8, 1043-1051.	1.7	84
126	The <i>Arabidopsis</i> Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory. Journal of Experimental Botany, 2015, 66, 5327-5336.	4.8	82

#	Article	IF	CITATIONS
127	An Arabidopsis Protein Phosphorylated in Response to Microbial Elicitation, AtPHOS32, Is a Substrate of MAP Kinases 3 and 6. Journal of Biological Chemistry, 2008, 283, 10493-10499.	3.4	77
128	Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling. Journal of Experimental Botany, 2015, 66, 5315-5325.	4.8	77
129	Microbeâ€associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Molecular Plant Pathology, 2009, 10, 375-387.	4.2	76
130	Acquisition of thermotolerance inSaccharomyces cerevisiaewithout heat shock protein hsp104 and in the absence of protein synthesis. FEBS Letters, 1991, 288, 86-90.	2.8	74
131	In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS ONE, 2017, 12, e0185808.	2.5	74
132	Isolation of New Arabidopsis Mutants With Enhanced Disease Susceptibility to Pseudomonas syringae by Direct Screening. Genetics, 1998, 149, 537-548.	2.9	74
133	Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant Journal, 2006, 47, 165-173.	5.7	71
134	Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza, 2018, 28, 779-785.	2.8	70
135	Identification of potato genes induced during colonization by Phytophthora infestans. Molecular Plant Pathology, 2001, 2, 125-134.	4.2	69
136	Peptide signalling in plant development and self/non-self perception. Current Opinion in Cell Biology, 2005, 17, 116-122.	5.4	69
137	Chimeric FLS2 Receptors Reveal the Basis for Differential Flagellin Perception in <i>Arabidopsis</i> and Tomato. Plant Cell, 2012, 24, 2213-2224.	6.6	69
138	Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Molecular Microbiology, 1997, 25, 571-581.	2.5	67
139	GintAMT3 – a Low-Affinity Ammonium Transporter of the Arbuscular Mycorrhizal Rhizophagus irregularis. Frontiers in Plant Science, 2016, 7, 679.	3.6	66
140	The growth defect of lrt1 , a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta, 2002, 214, 584-590.	3.2	65
141	Carbon and Nitrogen Metabolism in Mycorrhizal Networks and Mycoheterotrophic Plants of Tropical Forests: A Stable Isotope Analysis Â. Plant Physiology, 2011, 156, 952-961.	4.8	65
142	Effects of validamycin A, a potent trehalase inhibitor, and phytohormones on trehalose metabolism in roots and root nodules of soybean and cowpea. Planta, 1995, 197, 362.	3.2	64
143	Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box. Plant Journal, 2006, 48, 228-237.	5.7	62
144	Chitinase and peroxidase in effective (fix+) and ineffective (fix?) soybean nodules. Planta, 1992, 187, 295-300.	3.2	61

#	Article	IF	CITATIONS
145	Expression of ?-1,3-glucanase and chitinase in healthy, stem-rust-affected and elicitor-treated near-isogenic wheat lines showingSr5-orSr24-specified race-specific rust resistance. Planta, 1997, 201, 235-244.	3.2	61
146	Glycopeptide Elicitors of Stress Responses in Tomato Cells. Plant Physiology, 1992, 98, 1239-1247.	4.8	59
147	Distinct regulation of sucrose: sucroseâ€1â€fructosyltransferase (1â€6ST) and sucrose: fructanâ€6â€fructosyltransferase (6â€6FT), the key enzymes of fructan synthesis in barley leaves: 1â€6ST as the pacemaker. New Phytologist, 2004, 161, 735-748.	7.3	58
148	Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose:fructan 6-fructosyltransferase. FEBS Letters, 1997, 400, 355-358.	2.8	57
149	Desensitization of the Perception System for Chitin Fragments in Tomato Cells. Plant Physiology, 1998, 117, 643-650.	4.8	57
150	Cloning and Functional Analysis of Sucrose:Sucrose 1-Fructosyltransferase from Tall Fescue. Plant Physiology, 2000, 124, 1217-1228.	4.8	57
151	<i>Otospora bareai</i> , a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia, 2008, 100, 296-305.	1.9	57
152	Tissueâ€specific <scp>FLAGELLIN</scp> â€ <scp>SENSING</scp> 2 (<scp>FLS</scp> 2) expression in roots restores immune responses in <scp>A</scp> rabidopsis <i>fls2</i> mutants. New Phytologist, 2015, 206, 774-784.	7.3	57
153	A method for the study of fungal growth inhibition by plant proteins. FEMS Microbiology Letters, 1990, 69, 61-66.	1.8	55
154	The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae. FEBS Journal, 1992, 210, 125-132.	0.2	55
155	Trehalose becomes the most abundant nonâ€structural carbohydrate during senescence of soybean nodules. Journal of Experimental Botany, 2001, 52, 943-947.	4.8	53
156	Trehalose and trehalase in root nodules from various legumes. Physiologia Plantarum, 1994, 90, 86-92.	5.2	52
157	Effects of habitat fragmentation on choke disease (Epichloë bromicola) in the grass Bromus erectus. Journal of Ecology, 2001, 89, 247-255.	4.0	52
158	Expression of a functional barley sucrose-fructan 6-fructosyltransferase in the methylotrophic yeast Pichia pastoris. FEBS Letters, 1998, 440, 356-360.	2.8	51
159	Reduced Chitinase Activities in Ant Plants of the Genus Macaranga. Die Naturwissenschaften, 1999, 86, 146-149.	1.6	50
160	Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza, 2015, 25, 639-647.	2.8	50
161	Trehalose affects sucrose synthase and invertase activities in soybean (Glycine max [L.] Merr.) roots. Journal of Plant Physiology, 1998, 153, 255-257.	3.5	49
162	Ethylene Biosynthesis in Tomato Plants Infected by Phytophthora infestans. Journal of Plant Physiology, 1989, 134, 533-537.	3.5	48

#	Article	IF	CITATIONS
163	lron: an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene. Planta, 1991, 184, 244-247.	3.2	48
164	Plant defence genes are induced in the pathogenic interaction between bean roots and Fusarium solani, but not in the symbiotic interaction with the arbuscular mycorrhizal fungus Glomus mosseae. New Phytologist, 1998, 138, 589-598.	7.3	48
165	Purification of the Trehalase GMTRE1 from Soybean Nodules and Cloning of Its cDNA. GMTRE1 Is Expressed at a Low Level in Multiple Tissues1. Plant Physiology, 1999, 119, 489-496.	4.8	48
166	Nod factors and tri-iodobenzoic acid stimulate mycorrhizal colonization and affect carbohydrate partitioning in mycorrhizal roots of Lablab purpureus. New Phytologist, 1998, 139, 361-366.	7.3	47
167	Regulation of plants' phosphate uptake in common mycorrhizal networks: Role of intraradical fungal phosphate transporters. Plant Signaling and Behavior, 2016, 11, e1131372.	2.4	47
168	Tracing of Two Pseudomonas Strains in the Root and Rhizoplane of Maize, as Related to Their Plant Growth-Promoting Effect in Contrasting Soils. Frontiers in Microbiology, 2016, 7, 2150.	3.5	46
169	Three new species of arbuscular mycorrhizal fungi discovered at one location in a desert of Oman: <i>Diversispora omaniana</i> , <i>Septoglomus nakheelum</i> and <i>Rhizophagus arabicus</i> . Mycologia, 2014, 106, 243-259.	1.9	45
170	Arbuscular mycorrhiza in mini-mycorrhizotrons: first contact ofMedicago truncatularoots withGlomus intraradicesinduces chalcone synthase. New Phytologist, 2001, 150, 573-582.	7.3	44
171	An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signalling pathways. Physiological and Molecular Plant Pathology, 2005, 67, 180-193.	2.5	44
172	Finger Millet Growth and Nutrient Uptake Is Improved in Intercropping With Pigeon Pea Through "Biofertilization―and "Bioirrigation―Mediated by Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria. Frontiers in Environmental Science, 2018, 6, .	3.3	44
173	Transcriptome analysis of the Populus trichocarpa–Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation. Plant and Cell Physiology, 2017, 58, 1003-1017.	3.1	43
174	Effect of 1-Aminocyclopropane-1-Carboxylic Acid on the Production of Ethylene in Senescing Flowers of <i>Ipomoea tricolor</i> Cav Plant Physiology, 1980, 66, 566-571.	4.8	42
175	Partial purification and characterization of trehalase from soybean nodules. Journal of Plant Physiology, 1992, 140, 8-13.	3.5	42
176	Sensing of Osmotic Pressure Changes in Tomato Cells. Plant Physiology, 2000, 124, 1169-1180.	4.8	42
177	Antimicrobial Functions of the Plant Hydrolases, Chitinase and ß-1,3-Glucanase. Developments in Plant Pathology, 1993, , 391-400.	0.1	41
178	Distribution of fungal endophyte genotypes in doubly infected host grasses. Plant Journal, 1999, 18, 349-358.	5.7	40
179	Ectomycorrhiza: gene expression, metabolism and the wood-wide web. Current Opinion in Plant Biology, 2002, 5, 355-361.	7.1	40
180	Role of the Nod Factor Hydrolase MtNFH1 in Regulating Nod Factor Levels during Rhizobial Infection and in Mature Nodules of <i>Medicago truncatula</i> . Plant Cell, 2018, 30, 397-414.	6.6	40

#	Article	IF	CITATIONS
181	Differential accumulation of transcripts of 1-aminocyclopropane-1-carboxylate synthase genes in tomato plants infected with Phytophthora infestans and in elicitor-treated tomato cell suspensions. Journal of Plant Physiology, 1993, 141, 557-562.	3.5	39
182	A gene encoding a receptor-like protein kinase in the roots of common bean is differentially regulated in response to pathogens, symbionts and nodulation factors. Plant Science, 1999, 142, 133-145.	3.6	39
183	Impact of pyrochar and hydrochar on soybean (<i>Glycine max</i> L.) root nodulation and biological nitrogen fixation. Journal of Plant Nutrition and Soil Science, 2017, 180, 199-211.	1.9	39
184	Resistance ofUrtica dioica to mycorrhizal colonization: a possible involvement ofUrtica dioica agglutinin. Plant and Soil, 1996, 183, 131-136.	3.7	38
185	Light and sugar regulation of the barley sucrose : fructan 6-fructosyltransferase promoter. Journal of Plant Physiology, 2001, 158, 1601-1607.	3.5	38
186	Are Small GTPases Signal Hubs in Sugar-Mediated Induction of Fructan Biosynthesis?. PLoS ONE, 2009, 4, e6605.	2.5	38
187	Mixed inoculation alters infection success of strains of the endophyteEpichloë bromicolaon its grass hostBromus erectus. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 397-402.	2.6	37
188	Nutrient use efficiency and arbuscular mycorrhizal root colonisation of winter wheat cultivars in different farming systems of the DOK long-term trial. Journal of the Science of Food and Agriculture, 2010, 90, n/a-n/a.	3.5	37
189	Contamination Risks in Work with Synthetic Peptides: flg22 as an Example of a Pirate in Commercial Peptide Preparations. Plant Cell, 2012, 24, 3193-3197.	6.6	36
190	Flagellin Signalling in Plant Immunity. , 2007, 598, 358-371.		36
191	Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation. Journal of Plant Physiology, 1996, 149, 690-694.	3.5	35
192	The Nodulation Factor Hydrolase of <i>Medicago truncatula</i> : Characterization of an Enzyme Specifically Cleaving Rhizobial Nodulation Signals. Plant Physiology, 2013, 163, 1179-1190.	4.8	35
193	CNE1, aSaccharomyces cerevisiae Homologue of the Genes Encoding Mammalian Calnexin and Calreticulin. Yeast, 1993, 9, 185-188.	1.7	34
194	An Aqueous Extract of the Dry Mycelium of Penicillium chrysogenum Induces Resistance in Several Crops under Controlled and Field Conditions. European Journal of Plant Pathology, 2006, 114, 185-197.	1.7	34
195	Yield and baking quality of winter wheat cultivars in different farming systems of the DOK longâ€term trial. Journal of the Science of Food and Agriculture, 2009, 89, 2477-2491.	3.5	34
196	An acceptor-substrate binding site determining glycosyl transfer emerges from mutant analysis of a plant vacuolar invertase and a fructosyltransferase. Plant Molecular Biology, 2009, 69, 47-56.	3.9	34
197	Several MAMPs, including chitin fragments, enhance <i>At</i> Pep-triggered oxidative burst independently of wounding. Plant Signaling and Behavior, 2013, 8, e25346.	2.4	34
198	Consequences of a Deficit in Vitamin B6 Biosynthesis de Novo for Hormone Homeostasis and Root Development in Arabidopsis Â. Plant Physiology, 2014, 167, 102-117.	4.8	34

#	Article	IF	CITATIONS
199	Intracellular transport and vacuolar accumulation of o-coumaric acid glucoside in Melitolus alba mesophyll cell protoplasts. Biochimica Et Biophysica Acta - Biomembranes, 1985, 816, 25-36.	2.6	33
200	A Yeast-Derived Glycopeptide Elicitor and Chitosan or Digitonin Differentially Induce Ethylene Biosynthesis, Phenylalanine Ammonia-Lyase and Callose Formation in Suspension-Cultured Tomato Cells. Journal of Plant Physiology, 1991, 138, 741-746.	3.5	33
201	A method to study the rapid phosphorylation-related modulation of neutral trehalase activity by temperature shifts in yeast. FEBS Letters, 1991, 291, 355-358.	2.8	33
202	"Sampling Effect", a Problem in Biodiversity Manipulation? A Reply to David A. Wardle. Oikos, 1999, 87, 408.	2.7	33
203	Title is missing!. Plant and Soil, 2002, 243, 143-154.	3.7	33
204	Medicago truncatula shows distinct patterns of mycorrhiza-related gene expression after inoculation with three different arbuscular mycorrhizal fungi. Planta, 2008, 227, 671-680.	3.2	32
205	Microsatellites for disentangling underground networks: Strain-specific identification of Glomus intraradices, an arbuscular mycorrhizal fungus. Fungal Genetics and Biology, 2008, 45, 812-817.	2.1	32
206	Nod Factors and Chitooligomers Elicit an Increase in Cytosolic Calcium in Aequorin-Expressing Soybean Cells. Plant Physiology, 2000, 124, 733-740.	4.8	31
207	Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108-1: a comparison between symbiosis-specific class�V and defence-related class�IV chitinases. Planta, 2004, 219, 626-38.	3.2	31
208	Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia, 2008, 100, 296-305.	1.9	31
209	Genome Sequences of Two Plant Growth-Promoting Fluorescent Pseudomonas Strains, R62 and R81. Journal of Bacteriology, 2012, 194, 3272-3273.	2.2	31
210	Inactivation of Stress Induced 1-Aminocyclopropane Carboxylate Synthase in Vivo Differs from Substrate-Dependent Inactivation in Vitro. Plant Physiology, 1990, 93, 1482-1485.	4.8	29
211	Regulation of Sucrose-Sucrose-Fructosyltransferase in Barley Leaves. Plant Physiology, 1991, 97, 811-813.	4.8	29
212	Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence. Frontiers in Plant Science, 2015, 6, 14.	3.6	29
213	Pools of non-structural carbohydrates in soybean root nodules during water stress. Physiologia Plantarum, 1996, 98, 723-730.	5.2	28
214	The large subunit determines catalytic specificity of barley sucrose:fructan 6-fructosyltransferase and fescue sucrose:sucrose 1-fructosyltransferase. FEBS Letters, 2004, 567, 214-218.	2.8	28
215	Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. Mycorrhiza, 2017, 27, 695-708.	2.8	28
216	Iron: an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene. Planta, 1991, 184, 244-247.	3.2	28

#	Article	IF	CITATIONS
217	Fructan and fructanâ€metabolizing enzymes in the growth zone of barley leaves. New Phytologist, 1997, 136, 73-79.	7.3	27
218	Ectopic expression of the mycorrhizaâ€specific chitinase gene Mtchit 3â€3 in Medicago truncatula rootâ€organ cultures stimulates spore germination of glomalean fungi. New Phytologist, 2005, 167, 557-570.	7.3	27
219	A Two-Hybrid-Receptor Assay Demonstrates Heteromer Formation as Switch-On for Plant Immune Receptors Â. Plant Physiology, 2013, 163, 1504-1509.	4.8	27
220	Non-target effects of bioinoculants on rhizospheric microbial communities of Cajanus cajan. Applied Soil Ecology, 2014, 76, 26-33.	4.3	27
221	Asymmetric distribution of Concanavalin A binding sites on yeast plasmalemma and vacuolar membrane. Archives of Microbiology, 1976, 109, 115-118.	2.2	26
222	Characterization of Phytophthora infestans genes regulated during the interaction with potato. Molecular Plant Pathology, 2002, 3, 473-485.	4.2	25
223	Are ethylene and 1-aminocyclopropane-1-carboxylic acid involved in the induction of chitinase and ?-1,3-glucanase activity in sunflower cell-suspension cultures?. Planta, 1994, 192, 431.	3.2	23
224	Small RNA-Omics for Virome Reconstruction and Antiviral Defense Characterization in Mixed Infections of Cultivated <i>Solanum</i> Plants. Molecular Plant-Microbe Interactions, 2018, 31, 707-723.	2.6	23
225	Imbalanced Regulation of Fungal Nutrient Transports According to Phosphate Availability in a Symbiocosm Formed by Poplar, Sorghum, and Rhizophagus irregularis. Frontiers in Plant Science, 2019, 10, 1617.	3.6	23
226	Evaluation of the antifungal activity of the purified chitinase 1 from the filamentous fungusAphanocladium album. FEMS Microbiology Letters, 1992, 90, 105-109.	1.8	22
227	Intercropping Transplanted Pigeon Pea With Finger Millet: Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria Boost Yield While Reducing Fertilizer Input. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	22
228	Effects of Nitrate on Accumulation of Trehalose and other Carbohydrates and on Trehalase Activity in Soybean Root Nodules. Journal of Plant Physiology, 1994, 143, 153-160.	3.5	21
229	The effect of different nitrogen sources on the symbiotic interaction between Sorghum bicolor and Glomus intraradices : Expression of plant and fungal genes involved in nitrogen assimilation. Soil Biology and Biochemistry, 2015, 86, 159-163.	8.8	21
230	Differential Suppression of Nicotiana benthamiana Innate Immune Responses by Transiently Expressed Pseudomonas syringae Type III Effectors. Frontiers in Plant Science, 2018, 9, 688.	3.6	21
231	Lack of arginine- and polyphosphate-storage pools in a vacuole-deficient mutant (end1) ofSaccharomyces cerevisiae. FEBS Letters, 1989, 254, 133-136.	2.8	20
232	Localization of the Ethylene-Forming Enzyme from Tomatoes, 1-Aminocyclopropane-1-Carboxylate Oxidase, in Transgenic Yeast. Journal of Plant Physiology, 1992, 140, 681-686.	3.5	20
233	Does Wheat Genetically Modified for Disease Resistance Affect Root-Colonizing Pseudomonads and Arbuscular Mycorrhizal Fungi?. PLoS ONE, 2013, 8, e53825.	2.5	20
234	Bioirrigation: a common mycorrhizal network facilitates the water transfer from deep-rooted pigeon pea to shallow-rooted finger millet under drought. Plant and Soil, 2019, 440, 277-292.	3.7	20

#	Article	IF	CITATIONS
235	Deep-rooted pigeon pea promotes the water relations and survival of shallow-rooted finger millet during drought—Despite strong competitive interactions at ambient water availability. PLoS ONE, 2020, 15, e0228993.	2.5	20
236	Synthesis of Potential Inhibitors of Ethylene Biosynthesis: The diastereoisomers of 1-amino-2-bromocyclopropanecarboxylic acid. Helvetica Chimica Acta, 1995, 78, 403-410.	1.6	19
237	Kinetics of prolyl hydroxylation, intracellular transport and C-terminal processing of the tobacco vacuolar chitinase. Planta, 1995, 197, 250-256.	3.2	19
238	Isolation and identification of desert habituated arbuscular mycorrhizal fungi newly reported from the Arabian Peninsula. Journal of Arid Land, 2014, 6, 488-497.	2.3	19
239	Pool sizes of fructans in roots and leaves of mycorrhizal and nonâ€mycorrhizal barley. New Phytologist, 1999, 142, 551-559.	7.3	18
240	Hyphal in vitro growth of the arbuscular mycorrhizal fungus Glomus mosseae is affected by chitinase but not by β-1,3-glucanase. Mycorrhiza, 2001, 11, 279-282.	2.8	18
241	Differential mRNA Degradation of Two β-Tubulin Isoforms Correlates with Cytosolic Ca2+ Changes in Glucan-Elicited Soybean Cells. Plant Physiology, 2001, 126, 87-96.	4.8	18
242	Induction of ethylene biosynthesis is correlated with but not required for induction of alkaloid accumulation in elicitor-treated Eschscholtzia cells. Phytochemistry, 1991, 30, 2151-2154.	2.9	17
243	Mutational analysis of the active center of plant fructosyltransferases:Festuca1-SST and barley 6-SFT. FEBS Letters, 2005, 579, 4647-4653.	2.8	17
244	Cloning and functional characterization of a cDNA encoding barley soluble acid invertase (HvINV1). Plant Science, 2005, 168, 249-258.	3.6	17
245	Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms. Applied Soil Ecology, 2022, 169, 104156.	4.3	17
246	Glyceollin production in soybean during the process of infection by Glomus mosseae and Rhizoctonia solani. Agriculture, Ecosystems and Environment, 1990, 29, 451-456.	5.3	16
247	Mutation of either of two essential glutamates converts the catalytic domain of tobacco class I chitinase into a chitin-binding lectin. Plant Science, 1998, 134, 45-51.	3.6	16
248	Rapid nitrogen transfer in the <i><i>Sorghum bicolor-</i>Glomus mosseae</i> arbuscular mycorrhizal symbiosis. Plant Signaling and Behavior, 2013, 8, e25229.	2.4	16
249	Expression of major intrinsic protein genes in Sorghum bicolor roots under water deficit depends on arbuscular mycorrhizal fungal species. Soil Biology and Biochemistry, 2020, 140, 107643.	8.8	15
250	Biosynthesis of 1-aminocyclopropanecarboxylic acid: steric course of the reaction at the α-position. Journal of the Chemical Society Chemical Communications, 1986, , 238-239.	2.0	14
251	Induction of Ethylene Biosynthesis in Compatible and Incompatible Interactions of Soybean Roots with Phytophthora megasperma f. sp. glycinea and its Relation to Phytoalexin Accumulation. Journal of Plant Physiology, 1991, 138, 394-399.	3.5	14
252	Differential and tissue-specific activation pattern of the <i>AtPROPEP</i> and <i>AtPEPR</i> genes in response to biotic and abiotic stress in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2019, 14, e1590094.	2.4	14

#	Article	IF	CITATIONS
253	Photosynthesis in Protoplasts From Melilotus alba: Distribution of Products Between Vacuole and Cytosol. Zeitschrift Für Pflanzenphysiologie, 1983, 110, 231-238.	1.4	13
254	Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla. Frontiers in Plant Science, 2017, 8, 1263.	3.6	13
255	Tracking the carbon source of arbuscular mycorrhizal fungi colonizing C3 and C4 plants using carbon isotope ratios (δ13C). Soil Biology and Biochemistry, 2013, 58, 341-344.	8.8	12
256	Chitinase from Phaseolus vulgaris leaves. Methods in Enzymology, 1988, 161, 479-484.	1.0	10
257	Superinduction of ACC Synthase in Tomato Pericarp by Lithium Ions. , 1984, , 87-88.		10
258	Fructan and fructanâ€metabolizing enzymes in the growth zone of barley leaves. New Phytologist, 1997, 136, 73-79.	7.3	10
259	Peptides as Danger Signals: MAMPs and DAMPs. Signaling and Communication in Plants, 2012, , 163-181.	0.7	9
260	Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiologia Plantarum, 1997, 100, 153-158.	5.2	9
261	The Plant Wound Hormone Systemin Binds with the N-Terminal Part to Its Receptor but Needs the C-Terminal Part to Activate It. Plant Cell, 1998, 10, 1561.	6.6	7
262	Accumulation of soluble carbohydrates, trehalase and sucrose synthase in effective (Fix+) and ineffective (Fix -) nodules of soybean cultivars that differentially nodulate with Bradyrhizobium japonicum. Functional Plant Biology, 2003, 30, 965.	2.1	7
263	Dynamics of Lysosomal Functions in Plant Vacuoles. , 1987, , 361-368.		6
264	Carbohydrate Pools in Nodules of «Nonnodulating» and «Supernodulating» Soybean (Glycine max L.) Tj ET	Qq <u>Q</u> Q0 rg	gBT ₅ /Overlock
265	Stabbing in the BAK—An Original Target for Avirulence Genes of Plant Pathogens. Cell Host and Microbe, 2008, 4, 5-7.	11.0	5
266	[31] Transport in isolated yeast vacuoles: Characterization of arginine permease. Methods in Enzymology, 1989, 174, 504-518.	1.0	4
267	Resistance Genes and the Perception and transduction of Elicitor Signals in Host-Pathogen Interactions. , 1999, , 189-229.		3
268	Unexpected vagaries of microsatellite loci in <i>Glomus intraradices</i> : length polymorphisms are rarely caused by variation in repeat number only. New Phytologist, 2008, 180, 568-570.	7.3	3
269	Looking BAK again: Is an old acquaintance of innate immunity involved in the detection of herbivores?. Plant Signaling and Behavior, 2016, 11, e1252014.	2.4	3

270 Ethylene Biosynthesis in Tomato Infected by Phytophthora Infestans. , 1989, , 255-260.

3

#	Article	IF	CITATIONS
271	Symbiosis and the Biodiversity of Natural Ecosystems. Gaia, 1995, 4, 227-233.	0.7	2
272	The Bacterial Elicitor Flagellin Activates Its Receptor in Tomato Cells According to the Address-Message Concept. Plant Cell, 2000, 12, 1783.	6.6	2
273	Experimental Evidence of a Role for RLKs in Innate Immunity. Signaling and Communication in Plants, 2012, , 67-77.	0.7	2
274	Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Fungal Genetics and Biology, 2021, 147, 103517.	2.1	2
275	Spatial Arrangement and Biofertilizers Enhance the Performance of Legume—Millet Intercropping System in Rainfed Areas of Southern India. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	2
276	From isolation to application: a case study of arbuscular mycorrhizal fungi of the Arabian Peninsula. Symbiosis, 2022, 86, 123-132.	2.3	2
277	Synthesis and degradation of polyphosphate in the fission yeastSchizosaccharomyces pombe: mutations in phosphatase genes do not affect polyphosphate metabolism. FEMS Microbiology Letters, 1992, 92, 151-156.	1.8	1
278	Mode of synthesis of longâ€chain fructan in timothy haplocorm. Grassland Science, 2010, 56, 194-197.	1.1	1
279	Studies on the Induction of Chitinase and Disease Resistance in Cucumber Plants. Developments in Plant Pathology, 1993, , 177-177.	0.1	0