Mark Paskevicius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8462875/publications.pdf

Version: 2024-02-01

85541 109321 5,557 111 35 71 citations h-index g-index papers 113 113 113 3548 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Synergetic effect of multicomponent additives on limestone when assessed as a thermochemical energy storage material. Journal of Alloys and Compounds, 2022, 891, 161954.	5.5	8
2	Thermodynamic destablization of SrH2 using Al for the next generation of high temperature thermal batteries. Journal of Alloys and Compounds, 2022, 894, 162404.	5.5	4
3	Metallic and complex hydride-based electrochemical storage of energy. Progress in Energy, 2022, 4, 032001.	10.9	26
4	Hydrogen storage in complex hydrides: past activities and new trends. Progress in Energy, 2022, 4, 032009.	10.9	23
5	Simultaneous preparation of sodium borohydride and ammonia gas by ball milling. International Journal of Hydrogen Energy, 2022, 47, 25347-25356.	7.1	6
6	Kinetic investigation and numerical modelling of CaCO3/Al2O3 reactor for high-temperature thermal energy storage application. Solar Energy, 2022, 241, 262-274.	6.1	8
7	Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties. Progress in Energy, 2022, 4, 032007.	10.9	29
8	Diverse morphologies of zinc oxide nanoparticles and their electrocatalytic performance in hydrogen production. Journal of Energy Chemistry, 2021, 56, 162-170.	12.9	18
9	In situ SAXS studies of the pore development in biochar during gasification. Carbon, 2021, 172, 454-462.	10.3	24
10	Performance analysis of a high-temperature magnesium hydride reactor tank with a helical coil heat exchanger for thermal storage. International Journal of Hydrogen Energy, 2021, 46, 1038-1055.	7.1	29
11	Hydrated alkali-B ₁₁ H ₁₄ salts as potential solid-state electrolytes. Journal of Materials Chemistry A, 2021, 9, 15027-15037.	10.3	21
12	Molecular Dynamics in Ag ₂ B ₁₂ H ₁₂ Studied by Nuclear Magnetic Resonance. Journal of Physical Chemistry C, 2021, 125, 5534-5541.	3.1	9
13	A SAXS study of the pore structure evolution in biochar during gasification in H2O, CO2 and H2O/CO2. Fuel, 2021, 292, 120384.	6.4	25
14	Synthesis and crystal structures of decahydro-closo-decaborates of the divalent cations of strontium and manganese. Journal of Solid State Chemistry, 2021, 298, 122133.	2.9	5
15	Polymorphism of Calcium Decahydrido-closo-decaborate and Characterization of Its Hydrates. Inorganic Chemistry, 2021, 60, 10943-10957.	4.0	6
16	Insights into the mechanism of tar reforming using biochar as a catalyst. Fuel, 2021, 296, 120672.	6.4	24
17	Synthesis of closo-CB11H12– Salts Using Common Laboratory Reagents. Inorganic Chemistry, 2021, 60, 14744-14751.	4.0	14
18	Thermochemical energy storage system development utilising limestone. Chemical Engineering Journal Advances, 2021, 8, 100168.	5.2	14

#	Article	IF	Citations
19	A new strontium based reactive carbonate composite for thermochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 20585-20594.	10.3	6
20	An operational high temperature thermal energy storage system using magnesium iron hydride. International Journal of Hydrogen Energy, 2021, 46, 38755-38767.	7.1	10
21	An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage. Sustainable Energy and Fuels, 2020, 4, 285-292.	4.9	28
22	Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 2020, 827, 153548.	5.5	518
23	Exploring halide destabilised calcium hydride as a high-temperature thermal battery. Journal of Alloys and Compounds, 2020, 819, 153340.	5.5	17
24	Destabilized Calcium Hydride as a Promising High-Temperature Thermal Battery. Journal of Physical Chemistry C, 2020, 124, 17512-17519.	3.1	10
25	Thermochemical energy storage performance of zinc destabilized calcium hydride at high-temperatures. Physical Chemistry Chemical Physics, 2020, 22, 25780-25788.	2.8	10
26	Ammonium–Ammonia Complexes, N2H7+, in Ammonium closo-Borate Ammines: Synthesis, Structure, and Properties. Inorganic Chemistry, 2020, 59, 11449-11458.	4.0	6
27	Fluorine Substitution in Magnesium Hydride as a Tool for Thermodynamic Control. Journal of Physical Chemistry C, 2020, 124, 9109-9117.	3.1	8
28	Inexpensive thermochemical energy storage utilising additive enhanced limestone. Journal of Materials Chemistry A, 2020, 8, 9646-9653.	10.3	45
29	Hydroxylated <i>closo</i> -Dodecaborates M ₂ B ₁₂ (OH) ₁₂ (M = Li,) Tj ETQ Physical Chemistry C, 2020, 124, 11340-11349.	q1 1 0.78 3.1	
30	Thermochemical energy storage properties of a barium based reactive carbonate composite. Journal of Materials Chemistry A, 2020, 8, 10935-10942.	10.3	15
31	Difference in tar reforming activities between biochar catalysts activated in H2O and CO2. Fuel, 2020, 271, 117636.	6.4	26
32	Physicochemical Characterization of a Na–H–F Thermal Battery Material. Journal of Physical Chemistry C, 2020, 124, 5053-5060.	3.1	1
33	Thermal properties of thermochemical heat storage materials. Physical Chemistry Chemical Physics, 2020, 22, 4617-4625.	2.8	16
34	Magnesium based materials for hydrogen based energy storage: Past, present and future. International Journal of Hydrogen Energy, 2019, 44, 7809-7859.	7.1	460
35	Dolomite: a low cost thermochemical energy storage material. Journal of Materials Chemistry A, 2019, 7, 1206-1215.	10.3	50
36	Role of O-containing functional groups in biochar during the catalytic steam reforming of tar using the biochar as a catalyst. Fuel, 2019, 253, 441-448.	6.4	104

#	Article	IF	CITATIONS
37	Decomposition pathway of KAlH ₄ altered by the addition of Al ₂ S ₃ . Dalton Transactions, 2019, 48, 5048-5057.	3.3	1
38	Comment on "Bi-functional Li ₂ B ₁₂ H ₁₂ for energy storage and conversion applications: solid-state electrolyte and luminescent down-conversion dye―by J. A. Teprovich Jr, H. Colón-Mercado, A. L. Washington II, P. A. Ward, S. Greenway, D. M. Missimer, H. Hartman, J. Velten, J. H. Christian and R. Zidan, ⟨i⟩J. Mater. Chem. A⟨/i⟩, 2015, ⟨b⟩3⟨/b⟩, 22853. Journal of Materials Chemistry A, 2019, 7, 4185-4187.	10.3	7
39	Methods for accurate high-temperature Sieverts-type hydrogen measurements of metal hydrides. Journal of Alloys and Compounds, 2019, 787, 1225-1237.	5.5	24
40	Molten metal <i>closo</i> -borate solvates. Chemical Communications, 2019, 55, 3410-3413.	4.1	12
41	A thermal energy storage prototype using sodium magnesium hydride. Sustainable Energy and Fuels, 2019, 3, 985-995.	4.9	29
42	Future perspectives of thermal energy storage with metal hydrides. International Journal of Hydrogen Energy, 2019, 44, 7738-7745.	7.1	112
43	Hydrogen storage properties of eutectic metal borohydrides melt-infiltrated into porous Al scaffolds. Journal of Alloys and Compounds, 2019, 775, 474-480.	5. 5	17
44	Structure and Hydrogenation Properties of a HfNbTiVZr High-Entropy Alloy. Inorganic Chemistry, 2018, 57, 2103-2110.	4.0	121
45	Electrochemical Synthesis of Highly Ordered Porous Al Scaffolds Melt-Infiltrated with LiBH ₄ for Hydrogen Storage. Journal of the Electrochemical Society, 2018, 165, D37-D42.	2.9	9
46	Thermodynamics and performance of the Mg–H–F system for thermochemical energy storage applications. Physical Chemistry Chemical Physics, 2018, 20, 2274-2283.	2.8	31
47	Complex hydrides as thermal energy storage materials: characterisation and thermal decomposition of Na2Mg2NiH6. Journal of Materials Chemistry A, 2018, 6, 9099-9108.	10.3	24
48	Reorientational Motions and Ionic Conductivity in (NH4)2B10H10and (NH4)2B12H12. Journal of Physical Chemistry C, 2018, 122, 17073-17079.	3.1	10
49	From Metal Hydrides to Metal Borohydrides. Inorganic Chemistry, 2018, 57, 10768-10780.	4.0	45
50	Hydrogenation properties of lithium and sodium hydride – <i>closo</i> -borate, [B ₁₀ H ₁₀] ^{2â^'} and [B ₁₂ H ₁₂] ^{2â^'} , composites. Physical Chemistry Chemical Physics, 2018, 20, 16266-16275.	2.8	18
51	Metal borohydrides and derivatives – synthesis, structure and properties. Chemical Society Reviews, 2017, 46, 1565-1634.	38.1	320
52	Multifunctionality of silver closo-boranes. Nature Communications, 2017, 8, 15136.	12.8	66
53	Halogenated Sodium- <i>closo</i> -Dodecaboranes as Solid-State Ion Conductors. Chemistry of Materials, 2017, 29, 3423-3430.	6.7	73
54	Hydrogen Storage Stability of Nanoconfined MgH2 upon Cycling. Inorganics, 2017, 5, 57.	2.7	21

#	Article	IF	Citations
55	Thermal optimisation of metal hydride reactors for thermal energy storage applications. Sustainable Energy and Fuels, 2017, 1, 1820-1829.	4.9	42
56	Metal borohydride formation from aluminium boride and metal hydrides. Physical Chemistry Chemical Physics, 2016, 18, 27545-27553.	2.8	15
57	Cyclic stability and structure of nanoconfined Ti-doped NaAlH 4. International Journal of Hydrogen Energy, 2016, 41, 4159-4167.	7.1	16
58	Metal boranes: Progress and applications. Coordination Chemistry Reviews, 2016, 323, 60-70.	18.8	120
59	Sulfurized metal borohydrides. Dalton Transactions, 2016, 45, 639-645.	3.3	10
60	Metal hydrides for concentrating solarÂthermal power energy storage. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	95
61	Complex and liquid hydrides for energy storage. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	81
62	Stabilization of volatile Ti(BH ₄) ₃ by nano-confinement in a metal–organic framework. Chemical Science, 2016, 7, 666-672.	7.4	26
63	Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem, 2015, 8, 2789-2825.	6.8	302
64	Structural and kinetic investigation of the hydride composite Ca(BH ₄) ₂ + MgH ₂ system doped with NbF ₅ for solid-state hydrogen storage. Physical Chemistry Chemical Physics, 2015, 17, 27328-27342.	2.8	25
65	Reaction kinetic behaviour with relation to crystallite/grain size dependency in the Mg–Si–H system. Acta Materialia, 2015, 95, 244-253.	7.9	40
66	Metal hydride thermal heat storage prototype for concentrating solar thermal power. Energy, 2015, 88, 469-477.	8.8	122
67	<i>In situ</i> X-ray diffraction environments for high-pressure reactions. Journal of Applied Crystallography, 2015, 48, 1234-1241.	4.5	67
68	Thermodynamic destabilisation of MgH2 and NaMgH3 using Group IV elements Si, Ge or Sn. Journal of Alloys and Compounds, 2015, 623, 109-116.	5. 5	44
69	Mg ₂ Si Nanoparticle Synthesis for High Pressure Hydrogenation. Journal of Physical Chemistry C, 2014, 118, 1240-1247.	3.1	32
70	Novel solvates M(BH $<$ sub $>$ 4 $<$ /sub $>$) $<$ sub $>$ 3 $<$ /sub $>$ 5(CH $<$ sub $>$ 3 $<$ /sub $>$) $<$ sub $>$ 2 $<$ /sub $>$ and properties of halide-free M(BH $<$ sub $>$ 4 $<$ /sub $>$) $<$ sub $>$ 3 $<$ /sub $>$ (M = Y or Gd). Dalton Transactions, 2014, 43, 13333-13342.	3.3	52
71	Mechanochemical synthesis of amorphous silicon nanoparticles. RSC Advances, 2014, 4, 21979-21983.	3.6	20
72	Nanoconfinement degradation in NaAlH4/CMK-1. International Journal of Hydrogen Energy, 2014, 39, 11103-11109.	7.1	33

#	Article	IF	CITATIONS
73	Hydriding characteristics of NaMgH ₂ F with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage. RSC Advances, 2014, 4, 26552-26562.	3.6	77
74	Effect of Al and Mo substitution on the structural and hydrogen storage properties of CaNi5. International Journal of Hydrogen Energy, 2013, 38, 2325-2331.	7.1	21
7 5	Eutectic melting in metal borohydrides. Physical Chemistry Chemical Physics, 2013, 15, 19774.	2.8	113
76	First-order phase transition in the Li2B12H12 system. Physical Chemistry Chemical Physics, 2013, 15, 15825.	2.8	78
77	New directions for hydrogen storage: sulphur destabilised sodium aluminium hydride. Journal of Materials Chemistry A, 2013, 1, 12775.	10.3	18
78	Thermal Stability of Li ₂ B ₁₂ H ₁₂ and its Role in the Decomposition of LiBH ₄ . Journal of the American Chemical Society, 2013, 135, 6930-6941.	13.7	120
79	Crystalline Al _{1 â^'} <i>_×</i> Ti <i>_×</i> phases in the hydrogen cycl NaAlH ₄ + 0.02TiCl ₃ system. Philosophical Magazine, 2013, 93, 1080-1094.	ed _{1.6}	6
80	Research on metal hydrides revived for next-generation solutions to renewable energy storage. MRS Bulletin, 2013, 38, 1012-1013.	3.5	36
81	The synthesis of nanoscopic Ti based alloys and their effects on the MgH2 system compared with the MgH2Â+Â0.01Nb2O5 benchmark. International Journal of Hydrogen Energy, 2012, 37, 4227-4237.	7.1	72
82	In-Situ X-ray Diffraction Study of \hat{I}^3 -Mg(BH $<$ sub $>4<$ sub >0 0. Sub $>2<$ sub >0 1. Decomposition. Journal of Physical Chemistry C, 2012, 116, 15231-15240.	3.1	86
83	Hydrogen Absorption Kinetics of the Transition-Metal-Chloride-Enhanced NaAlH4 System. Journal of Physical Chemistry C, 2012, 116, 14205-14217.	3.1	28
84	The location of Ti containing phases after the completion of the NaAlH4+xTiCl3 milling process. Journal of Alloys and Compounds, 2012, 513, 597-605.	5.5	18
85	Functionality of the nanoscopic crystalline Al/amorphous Al50Ti50 surface embedded composite observed in the NaAlH4+xTiCl3 system after milling. Journal of Alloys and Compounds, 2012, 514, 163-169.	5.5	14
86	Amorphous Allâ^'xTix, Allâ^'xVx, and Allâ^'xFex phases in the hydrogen cycled TiCl3, VCl3 and FeCl3 enhanced NaAlH4 systems. Journal of Alloys and Compounds, 2012, 521, 112-120.	5 . 5	15
87	A structural review of nanoscopic Allâ^'xTMx phase formation in the TMCIn enhanced NaAlH4 system. Journal of Alloys and Compounds, 2012, 527, 16-24.	5.5	12
88	Hydrogen absorption kinetics and structural features of NaAlH4 enhanced with transition-metal and Ti-based nanoparticles. International Journal of Hydrogen Energy, 2012, 37, 15175-15186.	7.1	21
89	Novel methods for synthesizing halide-free alane without the formation of adducts. Applied Physics A: Materials Science and Processing, 2012, 107, 173-181.	2.3	19

Cycle life and hydrogen storage properties of mechanical alloyed Ca1â^'xZrxNi5â^'yCry; (xÂ=Â0, 0.05 and) Tj ETQq0,0 0 rgBT /Qverlock 1

#	Article	IF	Citations
91	Concentrating Solar Thermal Heat Storage Using Metal Hydrides. Proceedings of the IEEE, 2012, 100, 539-549.	21.3	154
92	In Situ Neutron Diffraction Study of the Deuteration of Isotopic Mg $<$ sup $>$ 11 $<$ /sup $>$ B $<$ sub $>$ 2 $<$ /sub $>$ 1 Journal of Physical Chemistry C, 2011, 115, 22669-22679.	3.1	35
93	Thermodynamics of Hydrogen Desorption from NaMgH ₃ and Its Application As a Solar Heat Storage Medium. Chemistry of Materials, 2011, 23, 4298-4300.	6.7	82
94	Magnesium Hydride Formation within Carbon Aerogel. Journal of Physical Chemistry C, 2011, 115, 1757-1766.	3.1	55
95	Hydrogen Desorption from the NaNH ₂ â^'MgH ₂ System. Journal of Physical Chemistry C, 2011, 115, 8407-8413.	3.1	31
96	Kinetic limitations in the Mg–Si–H system. International Journal of Hydrogen Energy, 2011, 36, 10779-10786.	7.1	18
97	Nanoscale cobalt doped carbon aerogel: microstructure and isosteric heat of hydrogen adsorption. International Journal of Hydrogen Energy, 2011, 36, 10855-10860.	7.1	17
98	Structure, morphology and hydrogen storage properties of a Ti0.97Zr0.019V0.439Fe0.097Cr0.045Al0.026Mn1.5 alloy. International Journal of Hydrogen Energy, 2011, 36, 7587-7593.	7.1	26
99	Nanoscopic Al1â^'xCex phases in the NaHÂ+ÂAlÂ+Â0.02CeCl3 system. International Journal of Hydrogen Energy, 2011, 36, 8403-8411.	7.1	19
100	Acetic acid catalysed carbon xerogels derived from resorcinol-furfural for hydrogen storage. International Journal of Hydrogen Energy, 2011, 36, 671-679.	7.1	30
101	Carbon aerogels from acetic acid catalysed resorcinolâ€"furfural using supercritical drying for hydrogen storage. Journal of Supercritical Fluids, 2011, 55, 1115-1117.	3.2	13
102	A synthesis method for cobalt doped carbon aerogels with high surface area and their hydrogen storage properties. International Journal of Hydrogen Energy, 2010, 35, 13242-13246.	7.1	35
103	The Mechanochemical synthesis of magnesium hydride nanoparticles. Journal of Alloys and Compounds, 2010, 492, L72-L74.	5.5	20
104	Thermodynamic Changes in Mechanochemically Synthesized Magnesium Hydride Nanoparticles. Journal of the American Chemical Society, 2010, 132, 5077-5083.	13.7	304
105	Encapsulation and Sustained Release of Curcumin using Superparamagnetic Silica Reservoirs. Chemistry - A European Journal, 2009, 15, 5661-5665.	3.3	52
106	Ammonia-induced precipitation of zirconyl chloride and zirconyl–yttrium chloride solutions under industrially relevant conditions. Powder Technology, 2009, 188, 222-228.	4.2	8
107	Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2kbar. Journal of Alloys and Compounds, 2009, 481, 595-599.	5.5	48
108	Characterisation of mechanochemically synthesised alane (AlH3) nanoparticles. Journal of Alloys and Compounds, 2009, 487, 370-376.	5. 5	42

#	Article	IF	CITATIONS
109	Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying. Nanotechnology, 2008, 19, 475605.	2.6	32
110	Wormlike Micelles from a Cage Amine Metallosurfactant. Langmuir, 2007, 23, 11986-11990.	3.5	31
111	Analysis of polydisperse bubbles in the aluminium–hydrogen system using a size-dependent contrast. Journal of Applied Crystallography, 2006, 39, 676-682.	4.5	5