
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8461932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic deletion of p66shc and/or cyclophilin D results in decreased pulmonary vascular tone. Cardiovascular Research, 2022, 118, 305-315.	3.8	8
2	Alternative oxidase encoded by sequence-optimized and chemically-modified RNA transfected into mammalian cells is catalytically active. Gene Therapy, 2022, 29, 655-664.	4.5	5
3	Myeloid-cell-specific deletion of inducible nitric oxide synthase protects against smoke-induced pulmonary hypertension in mice. European Respiratory Journal, 2022, 59, 2101153.	6.7	13
4	Altered fibrin clot structure and dysregulated fibrinolysis contribute toÂthrombosis risk in severe COVID-19. Blood Advances, 2022, 6, 1074-1087.	5.2	35
5	Reactive Oxygen Species Differentially Modulate the Metabolic and Transcriptomic Response of Endothelial Cells. Antioxidants, 2022, 11, 434.	5.1	9
6	SPARC, a Novel Regulator of Vascular Cell Function in Pulmonary Hypertension. Circulation, 2022, 145, 916-933.	1.6	21
7	FGF10 Triggers <i>De Novo</i> Alveologenesis in a Bronchopulmonary Dysplasia Model: Impact on Resident Mesenchymal Niche Cells. Stem Cells, 2022, 40, 605-617.	3.2	8
8	Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2022, 11, 4132.	2.4	7
9	Association of Clonal Hematopoiesis of Indeterminate Potential with Inflammatory Gene Expression in Patients with COPD. Cells, 2022, 11, 2121.	4.1	5
10	Amelioration of elastaseâ€induced lung emphysema and reversal of pulmonary hypertension by pharmacological iNOS inhibition in mice. British Journal of Pharmacology, 2021, 178, 152-171.	5.4	17
11	Pulmonary hypertension in chronic obstructive pulmonary disease. British Journal of Pharmacology, 2021, 178, 132-151.	5.4	51
12	Targeting Jak–Stat Signaling in Experimental Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 100-114.	2.9	37
13	Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. International Journal of Environmental Research and Public Health, 2021, 18, 1692.	2.6	43
14	Therapeutic Potential of Regorafenib—A Multikinase Inhibitor in Pulmonary Hypertension. International Journal of Molecular Sciences, 2021, 22, 1502.	4.1	4
15	Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Frontiers in Cardiovascular Medicine, 2021, 8, 649512.	2.4	23
16	The effect of long-term doxycycline treatment in a mouse model of cigarette smoke-induced emphysema and pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L903-L915.	2.9	9
17	Sex-specific differences in plasma levels of FXII, HK, and FXIIa-C1-esterase inhibitor complexes in community-acquired pneumonia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L764-L774.	2.9	2
18	Retinal tissue develops an inflammatory reaction to tobacco smoke and electronic cigarette vapor in mice. Journal of Molecular Medicine, 2021, 99, 1459-1469.	3.9	7

#	Article	IF	CITATIONS
19	Novel Therapeutic Targets for the Treatment of Right Ventricular Remodeling: Insights from the Pulmonary Artery Banding Model. International Journal of Environmental Research and Public Health, 2021, 18, 8297.	2.6	6
20	A Microfluidic System for Simultaneous Raman Spectroscopy, Patchâ€Clamp Electrophysiology, and Liveâ€Cell Imaging to Study Key Cellular Events of Single Living Cells in Response to Acute Hypoxia. Small Methods, 2021, 5, e2100470.	8.6	3
21	Impairment of hypoxic pulmonary vasoconstriction in acute respiratory distress syndrome. European Respiratory Review, 2021, 30, 210059.	7.1	16
22	Epigenetic Regulation by <i>Suv4-20h1</i> in Cardiopulmonary Progenitor Cells Is Required to Prevent Pulmonary Hypertension and Chronic Obstructive Pulmonary Disease. Circulation, 2021, 144, 1042-1058.	1.6	9
23	Adenylate Kinase 4—A Key Regulator of Proliferation and Metabolic Shift in Human Pulmonary Arterial Smooth Muscle Cells via Akt and HIF-1α Signaling Pathways. International Journal of Molecular Sciences, 2021, 22, 10371.	4.1	11
24	Shear force sensing of epithelial Na ⁺ channel (ENaC) relies on <i>N</i> -glycosylated asparagines in the palm and knuckle domains of αENaC. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 717-726.	7.1	49
25	IRAG1 Deficient Mice Develop PKG1β Dependent Pulmonary Hypertension. Cells, 2020, 9, 2280.	4.1	7
26	Deletion of NoxO1 limits atherosclerosis development in female mice. Redox Biology, 2020, 37, 101713.	9.0	13
27	Genetic Deficiency and Pharmacological Stabilization of Mast Cells Ameliorate Pressure Overload-Induced Maladaptive Right Ventricular Remodeling in Mice. International Journal of Molecular Sciences, 2020, 21, 9099.	4.1	5
28	Lack of Contribution of p66shc to Pressure Overload-Induced Right Heart Hypertrophy. International Journal of Molecular Sciences, 2020, 21, 9339.	4.1	4
29	NADPH oxidase subunit NOXO1 is a target for emphysema treatment in COPD. Nature Metabolism, 2020, 2, 532-546.	11.9	23
30	Cytochrome P450 epoxygenaseâ€derived 5,6â€epoxyeicosatrienoic acid relaxes pulmonary arteries in normoxia but promotes sustained pulmonary vasoconstriction in hypoxia. Acta Physiologica, 2020, 230, e13521.	3.8	9
31	Lung developmental arrest caused by PDGF-A deletion: consequences for the adult mouse lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L831-L843.	2.9	11
32	Lung epithelium damage in COPD – An unstoppable pathological event?. Cellular Signalling, 2020, 68, 109540.	3.6	27
33	FHL-1 is not involved in pressure overload-induced maladaptive right ventricular remodeling and dysfunction. Basic Research in Cardiology, 2020, 115, 17.	5.9	17
34	Flow Cytometry-Based Quantification of Neutrophil Extracellular Traps Shows an Association with Hypercoagulation in Septic Shock and Hypocoagulation in Postsurgical Systemic Inflammation—A Proof-of-Concept Study. Journal of Clinical Medicine, 2020, 9, 174.	2.4	13
35	Acute O ₂ sensing through HIF2α-dependent expression of atypical cytochrome oxidase subunits in arterial chemoreceptors. Science Signaling, 2020, 13, .	3.6	60
36	Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. Science Advances, 2020, 6, eaba0694.	10.3	39

#	Article	IF	CITATIONS
37	Update in Pulmonary Vascular Diseases and Right Ventricular Dysfunction 2019. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 22-28.	5.6	5
38	TRPV4 channels are essential for alveolar epithelial barrier function as protection from lung edema. JCI Insight, 2020, 5, .	5.0	28
39	Hypoxia-inducible factor signaling in pulmonary hypertension. Journal of Clinical Investigation, 2020, 130, 5638-5651.	8.2	104
40	Reply to Bogaard et al.: Emphysema Is—at the Most—Only a Mild Phenotype in the Sugen/Hypoxia Rat Model of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1450-1452.	5.6	4
41	Pulmonary Vascular Pressure Response to Acute Cold Exposure in Kyrgyz Highlanders. High Altitude Medicine and Biology, 2019, 20, 375-382.	0.9	3
42	Resolvin E1 Improves Mitochondrial Function in Human Alveolar Epithelial Cells during Severe Inflammation. Lipids, 2019, 54, 53-65.	1.7	15
43	Targeting cyclin-dependent kinases for the treatment of pulmonary arterial hypertension. Nature Communications, 2019, 10, 2204.	12.8	69
44	A RASSF1A-HIF1Î \pm loop drives Warburg effect in cancer and pulmonary hypertension. Nature Communications, 2019, 10, 2130.	12.8	77
45	Circulating Apoptotic Signals During Acute and Chronic Exposure to High Altitude in Kyrgyz Population. Frontiers in Physiology, 2019, 10, 54.	2.8	9
46	Riociguat for treatment of pulmonary hypertension in COPD: a translational study. European Respiratory Journal, 2019, 53, 1802445.	6.7	25
47	Letter by Hüttemann et al Regarding Article, "Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction― Circulation Research, 2019, 125, e33-e34.	4.5	0
48	Evidence for the Fucoidan/P-Selectin Axis as a Therapeutic Target in Hypoxia-induced Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1407-1420.	5.6	39
49	Alternative Oxidase Attenuates Cigarette Smoke–induced Lung Dysfunction and Tissue Damage. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 515-522.	2.9	37
50	Pulmonary hypertension in chronic lung disease and hypoxia. European Respiratory Journal, 2019, 53, 1801914.	6.7	428
51	Endoplasmic Reticulum-Mitochondrial Crosstalk in the Development of Idiopathic Pulmonary Fibrosis. , 2019, 73, .		0
52	Impact of the mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension. European Respiratory Journal, 2018, 51, 1701024.	6.7	64
53	ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 373-385.	5.6	78
54	Chronic Obstructive Pulmonary Disease and Pulmonary Vascular Disease. A Comorbidity?. Annals of the American Thoracic Society, 2018, 15, S278-S281.	3.2	8

#	Article	IF	CITATIONS
55	Pathobiology, pathology and genetics of pulmonary hypertension: Update from the Cologne Consensus Conference 2018. International Journal of Cardiology, 2018, 272, 4-10.	1.7	26
56	Development of a Gas-Tight Microfluidic System for Raman Sensing of Single Pulmonary Arterial Smooth Muscle Cells Under Normoxic/Hypoxic Conditions. Sensors, 2018, 18, 3238.	3.8	2
57	Hypoxic pulmonary vasoconstriction in isolated mouse pulmonary arterial vessels. Experimental Physiology, 2018, 103, 1185-1191.	2.0	14
58	Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers. Frontiers in Physiology, 2018, 9, 609.	2.8	42
59	The Giessen Pulmonary Hypertension Registry: Survival in pulmonary hypertension subgroups. Journal of Heart and Lung Transplantation, 2017, 36, 957-967.	0.6	221
60	Amplified canonical transforming growth factor-β signalling <i>via</i> heat shock protein 90 in pulmonary fibrosis. European Respiratory Journal, 2017, 49, 1501941.	6.7	66
61	Exercise Affects T-Cell Function by Modifying Intracellular Calcium Homeostasis. Medicine and Science in Sports and Exercise, 2017, 49, 29-39.	0.4	9
62	Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing. Circulation Research, 2017, 121, 424-438.	4.5	90
63	Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 2017, 136, 65-79.	1.6	196
64	Oxidative injury of the pulmonary circulation in the perinatal period: Short―and longâ€ŧerm consequences for the human cardiopulmonary system. Pulmonary Circulation, 2017, 7, 55-66.	1.7	24
65	Lung Ischaemia–Reperfusion Injury: The Role of Reactive Oxygen Species. Advances in Experimental Medicine and Biology, 2017, 967, 195-225.	1.6	29
66	Organizers and activators: Cytosolic Nox proteins impacting on vascular function. Free Radical Biology and Medicine, 2017, 109, 22-32.	2.9	58
67	Recent advances in oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Journal of Applied Physiology, 2017, 123, 1647-1656.	2.5	12
68	p38 MAPK Inhibition Improves Heart Function in Pressure-Loaded Right Ventricular Hypertrophy. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 603-614.	2.9	72
69	Ltbp4 regulates Pdgfrβ expression via TGFβ-dependent modulation of Nrf2 transcription factor function. Matrix Biology, 2017, 59, 109-120.	3.6	11
70	The Role of Transient Receptor Potential Channel 6 Channels in the Pulmonary Vasculature. Frontiers in Immunology, 2017, 8, 707.	4.8	39
71	Pressure overload leads to an increased accumulation and activity of mast cells in the right ventricle. Physiological Reports, 2017, 5, e13146.	1.7	36
72	Cigarette smoke causes acute airway disease and exacerbates chronic obstructive lung disease in neonatal mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L602-L610.	2.9	22

#	Article	IF	CITATIONS
73	CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity. Redox Biology, 2016, 9, 287-295.	9.0	33
74	Notch1 signalling regulates endothelial proliferation and apoptosis in pulmonary arterial hypertension. European Respiratory Journal, 2016, 48, 1137-1149.	6.7	89
75	The Cytosolic NADPH Oxidase Subunit NoxO1 Promotes an Endothelial Stalk Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1558-1565.	2.4	26
76	Soluble guanylate cyclase stimulator riociguat and phosphodiesterase 5 inhibitor sildenafil ameliorate pulmonary hypertension due to left heart disease in mice. International Journal of Cardiology, 2016, 216, 85-91.	1.7	28
77	Molecular mechanisms of hypoxiaâ€inducible factorâ€induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension. Journal of Physiology, 2016, 594, 1167-1177.	2.9	57
78	Effects of carbon monoxide-releasing molecules on pulmonary vasoreactivity in isolated perfused lungs. Journal of Applied Physiology, 2016, 120, 271-281.	2.5	9
79	Nestin-expressing vascular wall cells drive development of pulmonary hypertension. European Respiratory Journal, 2016, 47, 876-888.	6.7	33
80	NADPH oxidases—do they play a role in TRPC regulation under hypoxia?. Pflugers Archiv European Journal of Physiology, 2016, 468, 23-41.	2.8	19
81	Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. European Respiratory Journal, 2016, 47, 288-303.	6.7	120
82	Unchanged NADPH Oxidase Activity in Nox1-Nox2-Nox4 Triple Knockout Mice: What Do NADPH-Stimulated Chemiluminescence Assays Really Detect?. Antioxidants and Redox Signaling, 2016, 24, 392-399.	5.4	52
83	Increased S100A4 expression in the vasculature of human COPD lungs and murine model of smoke-induced emphysema. Respiratory Research, 2015, 16, 127.	3.6	32
84	Pathophysiology and Treatment of High-Altitude Pulmonary Vascular Disease. Circulation, 2015, 131, 582-590.	1.6	108
85	Hypoxia-Dependent Reactive Oxygen Species Signaling in the Pulmonary Circulation: Focus on Ion Channels. Antioxidants and Redox Signaling, 2015, 22, 537-552.	5.4	50
86	Pressure Overload Creates Right Ventricular Diastolic Dysfunction in a Mouse Model: Assessment by Echocardiography. Journal of the American Society of Echocardiography, 2015, 28, 828-843.	2.8	33
87	Sestrin 2 Protein Regulates Platelet-derived Growth Factor Receptor Î ² (PdgfrÎ ²) Expression by Modulating Proteasomal and Nrf2 Transcription Factor Functions. Journal of Biological Chemistry, 2015, 290, 9738-9752.	3.4	17
88	Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice. PLoS ONE, 2015, 10, e0129327.	2.5	29
89	Hypoxia- or PDGF-BB-dependent paxillin tyrosine phosphorylation in pulmonary hypertension is reversed by HIF-1α depletion or imatinib treatment. Thrombosis and Haemostasis, 2014, 112, 1288-1303.	3.4	18
90	Histological Characterization of Mast Cell Chymase in Patients with Pulmonary Hypertension and Chronic Obstructive Pulmonary Disease. Pulmonary Circulation, 2014, 4, 128-136.	1.7	36

#	Article	IF	CITATIONS
91	Stimulation of Soluble Guanylate Cyclase Prevents Cigarette Smoke–induced Pulmonary Hypertension and Emphysema. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1359-1373.	5.6	80
92	Lysyl Oxidases Play a Causal Role in Vascular Remodeling in Clinical and Experimental Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1446-1458.	2.4	97
93	Structural and functional prevention of hypoxia-induced pulmonary hypertension by individualized exercise training in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L986-L995.	2.9	31
94	Arterial hypertension in a murine model of sleep apnea. Journal of Hypertension, 2014, 32, 300-305.	0.5	47
95	Nox Family NADPH Oxidases in Mechano-Transduction: Mechanisms and Consequences. Antioxidants and Redox Signaling, 2014, 20, 887-898.	5.4	68
96	Impact of S-Adenosylmethionine Decarboxylase 1 on Pulmonary Vascular Remodeling. Circulation, 2014, 129, 1510-1523.	1.6	23
97	Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nature Medicine, 2014, 20, 1289-1300.	30.7	233
98	Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radical Biology and Medicine, 2014, 76, 208-226.	2.9	546
99	Endothelin-1 driven proliferation of pulmonary arterial smooth muscle cells is c-fos dependent. International Journal of Biochemistry and Cell Biology, 2014, 54, 137-148.	2.8	41
100	Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases. Journal of Molecular and Cellular Cardiology, 2014, 73, 70-79.	1.9	81
101	Novel and Emerging Therapies for Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 394-400.	5.6	75
102	Mitochondrial Hyperpolarization in Pulmonary Vascular Remodeling. Mitochondrial Uncoupling Protein Deficiency as Disease Model. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 358-367.	2.9	66
103	Effects of multikinase inhibitors on pressure overload-induced right ventricular remodeling. International Journal of Cardiology, 2013, 167, 2630-2637.	1.7	35
104	Function of NADPH Oxidase 1 in Pulmonary Arterial Smooth Muscle Cells After Monocrotaline-Induced Pulmonary Vascular Remodeling. Antioxidants and Redox Signaling, 2013, 19, 2213-2231.	5.4	62
105	Cofilin, a hypoxiaâ€regulated protein in murine lungs identified by 2 <scp>DE</scp> : Role of the cytoskeletal protein cofilin in pulmonary hypertension. Proteomics, 2013, 13, 75-88.	2.2	16
106	Effects of Dimethylarginine Dimethylaminohydrolase–1 Overexpression on the Response of the Pulmonary Vasculature to Hypoxia. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 491-500.	2.9	17
107	Classical Transient Receptor Potential Channel 1 in Hypoxia-induced Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1451-1459.	5.6	77
108	Oxygen-dependent expression of cytochrome c oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Research, 2013, 41, 2255-2266.	14.5	146

#	Article	IF	CITATIONS
109	Functional and Muscular Adaptations in an Experimental Model for Isometric Strength Training in Mice. PLoS ONE, 2013, 8, e79069.	2.5	20
110	Inhibition of MicroRNA-17 Improves Lung and Heart Function in Experimental Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 409-419.	5.6	206
111	PAR-2 Inhibition Reverses Experimental Pulmonary Hypertension. Circulation Research, 2012, 110, 1179-1191.	4.5	61
112	Mitochondrial complex II is essential for hypoxia-induced pulmonary vasoconstriction of intra- but not of pre-acinar arteries. Cardiovascular Research, 2012, 93, 702-710.	3.8	20
113	Cytochrome <i>c</i> oxidase subunit 4 isoform 2â€knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. FASEB Journal, 2012, 26, 3916-3930.	0.5	62
114	Immune and Inflammatory Cell Involvement in the Pathology of Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 897-908.	5.6	296
115	BDNF/TrkB Signaling Augments Smooth Muscle Cell Proliferation in Pulmonary Hypertension. American Journal of Pathology, 2012, 181, 2018-2029.	3.8	43
116	Activation of TRPC6 channels is essential for lung ischaemia–reperfusion induced oedema in mice. Nature Communications, 2012, 3, 649.	12.8	162
117	Hypoxia-Dependent TRP Channel Function in Pulmonary Arterial Smooth Muscle Cells. Methods in Pharmacology and Toxicology, 2012, , 283-300.	0.2	0
118	Paxillin Regulates Pulmonary Arterial Smooth Muscle Cell Function in Pulmonary Hypertension. American Journal of Pathology, 2012, 181, 1621-1633.	3.8	27
119	Nox4 Is a Protective Reactive Oxygen Species Generating Vascular NADPH Oxidase. Circulation Research, 2012, 110, 1217-1225.	4.5	540
120	Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radical Biology and Medicine, 2012, 52, 1033-1042.	2.9	68
121	Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction. Respiratory Research, 2012, 13, 7.	3.6	20
122	Riociguat for the treatment of pulmonary hypertension. Expert Opinion on Investigational Drugs, 2011, 20, 567-576.	4.1	81
123	Inducible NOS Inhibition Reverses Tobacco-Smoke-Induced Emphysema and Pulmonary Hypertension in Mice. Cell, 2011, 147, 293-305.	28.9	293
124	Diacylglycerol regulates acute hypoxic pulmonary vasoconstriction via TRPC6. Respiratory Research, 2011, 12, 20.	3.6	51
125	VEGF Receptor Inhibition As a Model of Pulmonary Hypertension in Mice. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1103-1105.	5.6	5
126	Hypoxic Pulmonary Hypertension in Mice with Constitutively Active Plateletâ€Derived Growth Factor Receptorâ€Î². Pulmonary Circulation, 2011, 1, 259-268.	1.7	44

#	Article	IF	CITATIONS
127	Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction. Respiratory Physiology and Neurobiology, 2010, 174, 282-291.	1.6	35
128	NADPH oxidases in cardiovascular disease. Free Radical Biology and Medicine, 2010, 49, 687-706.	2.9	241
129	Effects of phosphodiesterase 4 inhibition on bleomycin-induced pulmonary fibrosis in mice. BMC Pulmonary Medicine, 2010, 10, 26.	2.0	38
130	Inactivation of sestrin 2 induces TGF-β signaling and partially rescues pulmonary emphysema in a mouse model of COPD. DMM Disease Models and Mechanisms, 2010, 3, 246-253.	2.4	49
131	Hypoxia-induced pulmonary hypertension: comparison of soluble epoxide hydrolase deletion vs. inhibition. Cardiovascular Research, 2010, 85, 232-240.	3.8	66
132	Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLoS Biology, 2010, 8, e1000479.	5.6	377
133	Dysregulation of the IL-13 Receptor System. A Novel Pathomechanism in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 805-818.	5.6	59
134	Animal models of pulmonary hypertension: role in translational research. Drug Discovery Today: Disease Models, 2010, 7, 89-97.	1.2	11
135	Nebulization of the acidified sodium nitrite formulation attenuates acute hypoxic pulmonary vasoconstriction. Respiratory Research, 2010, 11, 81.	3.6	13
136	Identification of right heart-enriched genes in a murine model of chronic outflow tract obstruction. Journal of Molecular and Cellular Cardiology, 2010, 49, 598-605.	1.9	56
137	Mitochondrial complex II participates in normoxic and hypoxic regulation of α-keto acids in the murine heart. Journal of Molecular and Cellular Cardiology, 2010, 49, 950-961.	1.9	7
138	Classical transient receptor potential channel 6 (TRPC6) is essential for ischemiaâ€reperfusion injury of the lung. FASEB Journal, 2010, 24, 591.2.	0.5	0
139	Heme Oxygenase-2 and Large-Conductance Ca2+-activated K+Channels. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 353-364.	5.6	37
140	Endothelin-1 Inhibits Background Two-Pore Domain Channel TASK-1 in Primary Human Pulmonary Artery Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 476-483.	2.9	58
141	Effects of hypercapnia with and without acidosis on hypoxic pulmonary vasoconstriction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L977-L983.	2.9	60
142	The soluble guanylate cyclase activator HMR1766 reverses hypoxia-induced experimental pulmonary hypertension in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L658-L665.	2.9	35
143	Intermedin/adrenomedullin-2 is a hypoxia-induced endothelial peptide that stabilizes pulmonary microvascular permeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L837-L845.	2.9	59
144	Novel soluble guanylyl cyclase stimulator BAY 41-2272 attenuates ischemia-reperfusion-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L462-L469.	2.9	20

#	Article	IF	CITATIONS
145	Cellular and Molecular Basis of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2009, 54, S20-S31.	2.8	714
146	Direct eicosanoid profiling of the hypoxic lung by comprehensive analysis via capillary liquid chromatography with dual online photodiode-array and tandem mass-spectrometric detection. Analytical and Bioanalytical Chemistry, 2008, 390, 697-714.	3.7	23
147	Characterization of a murine model of monocrotaline pyrrole-induced acute lung injury. BMC Pulmonary Medicine, 2008, 8, 25.	2.0	36
148	NOX4 Regulates ROS Levels Under Normoxic and Hypoxic Conditions, Triggers Proliferation, and Inhibits Apoptosis in Pulmonary Artery Adventitial Fibroblasts. Antioxidants and Redox Signaling, 2008, 10, 1687-1698.	5.4	118
149	Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. FASEB Journal, 2008, 22, 4306-4315.	0.5	100
150	Sildenafil in hypoxic pulmonary hypertension potentiates a compensatory upâ€regulation of NO GMP signaling. FASEB Journal, 2008, 22, 30-40.	0.5	36
151	Fhl-1, a New Key Protein in Pulmonary Hypertension. Circulation, 2008, 118, 1183-1194.	1.6	79
152	Nitric Oxide–Mediated Zinc Release. Circulation Research, 2008, 102, 1451-1454.	4.5	7
153	Combined Tyrosine and Serine/Threonine Kinase Inhibition by Sorafenib Prevents Progression of Experimental Pulmonary Hypertension and Myocardial Remodeling. Circulation, 2008, 118, 2081-2090.	1.6	139
154	Hypoxia-Dependent Regulation of Nonphagocytic NADPH Oxidase Subunit NOX4 in the Pulmonary Vasculature. Circulation Research, 2007, 101, 258-267.	4.5	317
155	Phosphodiesterase 1 Upregulation in Pulmonary Arterial Hypertension. Circulation, 2007, 115, 2331-2339.	1.6	139
156	Hypoxia-induced pulmonary hypertension: Different impact of iloprost, sildenafil, and nitric oxide. Respiratory Medicine, 2007, 101, 2125-2132.	2.9	27
157	Cellular and molecular mechanisms of hypoxia-inducible factor driven vascular remodeling. Thrombosis and Haemostasis, 2007, 97, 774-787.	3.4	81
158	In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium, 2007, 42, 233-244.	2.4	84
159	Impact of Mitochondria and NADPH Oxidases on Acute and Sustained Hypoxic Pulmonary Vasoconstriction. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 505-513.	2.9	90
160	Hypoxia in lung vascular biology and disease. Cardiovascular Research, 2006, 71, 618-619.	3.8	5
161	Oxygen sensors in hypoxic pulmonary vasoconstriction. Cardiovascular Research, 2006, 71, 620-629.	3.8	61
162	Hypoxia- and non-hypoxia-related pulmonary hypertension — Established and new therapies. Cardiovascular Research, 2006, 72, 30-40.	3.8	49

10

#	Article	IF	CITATIONS
163	Activation of Soluble Guanylate Cyclase Reverses Experimental Pulmonary Hypertension and Vascular Remodeling. Circulation, 2006, 113, 286-295.	1.6	208
164	Impact of HIFâ€1α and HIFâ€2α on proliferation and migration of human pulmonary artery fibroblasts in hypoxia. FASEB Journal, 2006, 20, 163-165.	0.5	52
165	Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19093-19098.	7.1	273
166	Hypoxic pulmonary vasoconstriction–triggered by an increase in reactive oxygen species?. Novartis Foundation Symposium, 2006, 272, 196-208; discussion 208-17.	1.1	7
167	Congenital erythropoietin over-expression causes "anti-pulmonary hypertensive―structural and functional changes in mice, both in normoxia and hypoxia. Thrombosis and Haemostasis, 2005, 94, 630-638.	3.4	31
168	Inhaled Iloprost Reverses Vascular Remodeling in Chronic Experimental Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 358-363.	5.6	62
169	Prostanoids and Phosphodiesterase Inhibitors in Experimental Pulmonary Hypertension. Current Topics in Developmental Biology, 2005, 67, 251-284.	2.2	9
170	Identification of novel Nox4 splice variants with impact on ROS levels in A549 cells. Biochemical and Biophysical Research Communications, 2005, 329, 32-39.	2.1	88
171	Expression profiling of laser-microdissected intrapulmonary arteries in hypoxia-induced pulmonary hypertension. Respiratory Research, 2005, 6, 109.	3.6	99
172	Lung vasodilatory response to inhaled iloprost in experimental pulmonary hypertension: amplification by different type phosphodiesterase inhibitors. Respiratory Research, 2005, 6, 76.	3.6	31
173	Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy. Respiratory Research, 2005, 6, 86.	3.6	32
174	Reversal of experimental pulmonary hypertension by PDGF inhibition. Journal of Clinical Investigation, 2005, 115, 2811-2821.	8.2	917
175	Chronic Sildenafil Treatment Inhibits Monocrotaline-induced Pulmonary Hypertension in Rats. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 39-45.	5.6	230
176	Antiremodeling Effects of Iloprost and the Dual-Selective Phosphodiesterase 3/4 Inhibitor Tolafentrine in Chronic Experimental Pulmonary Hypertension. Circulation Research, 2004, 94, 1101-1108.	4.5	97
177	Measurement of exhaled hydrogen peroxide from rabbit lungs. Biological Chemistry, 2004, 385, 259-264.	2.5	9
178	Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radical Biology and Medicine, 2004, 36, 1279-1288.	2.9	183
179	Basic features of hypoxic pulmonary vasoconstriction in mice. Respiratory Physiology and Neurobiology, 2004, 139, 191-202.	1.6	58
180	Downregulation of hypoxic vasoconstriction by chronic hypoxia in rabbits: effects of nitric oxide. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H931-H938.	3.2	34

#	Article	IF	CITATIONS
181	Effects of Mitochondrial Inhibitors and Uncouplers on Hypoxic Vasoconstriction in Rabbit Lungs. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 721-732.	2.9	51
182	Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L710-L719.	2.9	148
183	cDNA Array Hybridization after Laser-Assisted Microdissection from Nonneoplastic Tissue. American Journal of Pathology, 2002, 160, 81-90.	3.8	75
184	Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet, The, 2002, 360, 895-900.	13.7	720
185	NO and reactive oxygen species are involved in biphasic hypoxic vasoconstriction of isolated rabbit lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L638-L645.	2.9	59
186	Alveolar epithelial barrier functions in ventilated perfused rabbit lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L896-L904.	2.9	23
187	Hypoxic pulmonary vasoconstriction: a multifactorial response?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L314-L317.	2.9	40
188	Combination of nonspecific PDE inhibitors with inhaled prostacyclin in experimental pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1361-L1368.	2.9	37
189	Physiologic basis for the treatment of pulmonary hypertension. Translational Research, 2001, 138, 287-297.	2.3	81
190	Coaerosolization of Phosphodiesterase Inhibitors Markedly Enhances the Pulmonary Vasodilatory Response to Inhaled Iloprost in Experimental Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1694-1700.	5.6	54
191	Urodilatin, a Natriuretic Peptide Stimulating Particulate Guanylate Cyclase, and the Phosphodiesterase 5 Inhibitor Dipyridamole Attenuate Experimental Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 219-225.	2.9	22
192	The PDE inhibitor zaprinast enhances NO-mediated protection against vascular leakage in reperfused lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L496-L502.	2.9	12
193	Hypoxic vasoconstriction in intact lungs: a role for NADPH oxidase-derived H ₂ O ₂ ?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L683-L690.	2.9	87
194	Nitric Oxide (NO)–Dependent but Not NO-Independent Guanylate Cyclase Activation Attenuates Hypoxic Vasoconstriction in Rabbit Lungs. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 222-227.	2.9	24
195	Evidence for a role of protein kinase C in hypoxic pulmonary vasoconstriction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L90-L95.	2.9	43
196	Low-dose Systemic Phosphodiesterase Inhibitors Amplify the Pulmonary Vasodilatory Response to Inhaled Prostacyclin in Experimental Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 1500-1506.	5.6	73
197	Effects of arachidonic acid metabolism on hypoxic vasoconstriction in rabbit lungs. European Journal of Pharmacology, 1998, 356, 231-237.	3.5	16
198	Nitro blue tetrazolium inhibits but does not mimic hypoxic vasoconstriction in isolated rabbit lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L721-L727.	2.9	24

#	Article	IF	CITATIONS
199	Hypoxic vasoconstriction in buffer-perfused rabbit lungs. Respiration Physiology, 1995, 100, 159-169.	2.7	71
200	Hypoxic Pulmonary Vasoconstriction-Triggered by an Increase in Reactive Oxygen Species?. Novartis Foundation Symposium, 0, , 196-213.	1.1	12