
Giuliano Taccola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8461813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuromodulation and restoration of motor responses after severe spinal cord injury. , 2022, , 51-63.		2
2	Stochastic spinal neuromodulation tunes the intrinsic logic of spinal neural networks. Experimental Neurology, 2022, 355, 114138.	4.1	3
3	Histamine H3 Receptors Expressed in Ventral Horns Modulate Spinal Motor Output. Cellular and Molecular Neurobiology, 2021, 41, 185-190.	3.3	Ο
4	GABAergic Mechanisms Can Redress the Tilted Balance between Excitation and Inhibition in Damaged Spinal Networks. Molecular Neurobiology, 2021, 58, 3769-3786.	4.0	12
5	A Biomimetic, SoC-Based Neural Stimulator for Novel Arbitrary-Waveform Stimulation Protocols. Frontiers in Neuroscience, 2021, 15, 697731.	2.8	4
6	An epidural stimulating interface unveils the intrinsic modulation of electrically motor evoked potentials in behaving rats. Journal of Neurophysiology, 2021, 126, 1635-1641.	1.8	3
7	Using EMG to deliver lumbar dynamic electrical stimulation to facilitate cortico-spinal excitability. Brain Stimulation, 2020, 13, 20-34.	1.6	21
8	Selective Antagonism of A1 Adenosinergic Receptors Strengthens the Neuromodulation of the Sensorimotor Network During Epidural Spinal Stimulation. Frontiers in Systems Neuroscience, 2020, 14, 44.	2.5	6
9	Complications of epidural spinal stimulation: lessons from the past and alternatives for the future. Spinal Cord, 2020, 58, 1049-1059.	1.9	28
10	Acute neuromodulation restores spinally-induced motor responses after severe spinal cord injury. Experimental Neurology, 2020, 327, 113246.	4.1	13
11	A "noisy―electrical stimulation protocol favors muscle regeneration in vitro through release of endogenous ATP. Experimental Cell Research, 2019, 381, 121-128.	2.6	6
12	Histamine modulates spinal motoneurons and locomotor circuits. Journal of Neuroscience Research, 2018, 96, 889-900.	2.9	7
13	Afferent Input Induced by Rhythmic Limb Movement Modulates Spinal Neuronal Circuits in an Innovative Robotic In Vitro Preparation. Neuroscience, 2018, 394, 44-59.	2.3	4
14	Multilevel Analysis of Locomotion in Immature Preparations Suggests Innovative Strategies to Reactivate Stepping after Spinal Cord Injury. Current Pharmaceutical Design, 2017, 23, 1764-1777.	1.9	9
15	Two Distinct Stimulus Frequencies Delivered Simultaneously at Low Intensity Generate Robust Locomotor Patterns. Neuromodulation, 2016, 19, 563-575.	0.8	5
16	Neuromodulation of the neural circuits controlling the lower urinary tract. Experimental Neurology, 2016, 285, 182-189.	4.1	34
17	A new model of nerve injury in the rat reveals a role of Regulator of G protein Signaling 4 in tactile hypersensitivity. Experimental Neurology, 2016, 286, 1-11.	4.1	12
18	Electrical Stimulation Able to Trigger Locomotor Spinal Circuits Also Induces Dorsal Horn Activity. Neuromodulation, 2016, 19, 38-46.	0.8	4

GIULIANO TACCOLA

#	Article	lF	CITATIONS
19	Staggered multi-site low-frequency electrostimulation effectively induces locomotor patterns in the isolated rat spinal cord. Spinal Cord, 2016, 54, 93-101.	1.9	18
20	Extracellular stimulation with human "noisy―electromyographic patterns facilitates myotube activity. Journal of Muscle Research and Cell Motility, 2015, 36, 349-357.	2.0	12
21	Nanomolar Oxytocin Synergizes with Weak Electrical Afferent Stimulation to Activate the Locomotor CPG of the Rat Spinal Cord In Vitro. PLoS ONE, 2014, 9, e92967.	2.5	15
22	Schwann cell migration and neurite outgrowth are influenced by media conditioned by epineurial fibroblasts. Neuroscience, 2013, 252, 144-153.	2.3	28
23	Acute Spinal Cord Injury In Vitro: Insight into Basic Mechanisms. Neuromethods, 2013, , 39-62.	0.3	5
24	Early spread of hyperexcitability to caudal dorsal horn networks after a chemically-induced lesion of the rat spinal cord in vitro. Neuroscience, 2013, 229, 155-163.	2.3	13
25	Rat locomotor spinal circuits in vitro are activated by electrical stimulation with noisy waveforms sampled from human gait. Physiological Reports, 2013, 1, e00025.	1.7	7
26	Coapplication of noisy patterned electrical stimuli and NMDA plus serotonin facilitates fictive locomotion in the rat spinal cord. Journal of Neurophysiology, 2012, 108, 2977-2990.	1.8	15
27	A1 adenosine receptor modulation of chemically and electrically evoked lumbar locomotor network activity in isolated newborn rat spinal cords. Neuroscience, 2012, 222, 191-204.	2.3	15
28	Newborn Analgesia Mediated by Oxytocin during Delivery. Frontiers in Cellular Neuroscience, 2011, 5, 3.	3.7	102
29	The locomotor central pattern generator of the rat spinal cord in vitro is optimally activated by noisy dorsal root waveforms. Journal of Neurophysiology, 2011, 106, 872-884.	1.8	26
30	Dynamics of early locomotor network dysfunction following a focal lesion in an <i>in vitro</i> model of spinal injury. European Journal of Neuroscience, 2010, 31, 60-78.	2.6	23
31	Deconstructing locomotor networks with experimental injury to define their membership. Annals of the New York Academy of Sciences, 2010, 1198, 242-251.	3.8	7
32	GABAA and strychnine-sensitive glycine receptors modulate N-methyl-d-aspartate–evoked acetylcholine release from rat spinal motoneurons: A possible role in neuroprotection. Neuroscience, 2008, 154, 1517-1524.	2.3	5
33	Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord. Neuroscience, 2008, 155, 538-555.	2.3	55
34	ERG Conductance Expression Modulates the Excitability of Ventral Horn GABAergic Interneurons That Control Rhythmic Oscillations in the Developing Mouse Spinal Cord. Journal of Neuroscience, 2007, 27, 919-928.	3.6	57
35	Differential modulation by tetraethylammonium of the processes underlying network bursting in the neonatal rat spinal cord in vitro. Neuroscience, 2007, 146, 1906-1917.	2.3	7
36	Anoxic persistence of lumbar respiratory bursts and block of lumbar locomotion in newborn rat brainstem–spinal cords. Journal of Physiology, 2007, 585, 507-524.	2.9	23

GIULIANO TACCOLA

#	Article	IF	CITATIONS
37	Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro. Neuroscience, 2006, 137, 659-670.	2.3	24
38	Tuning and playing a motor rhythm: how metabotropic glutamate receptors orchestrate generation of motor patterns in the mammalian central nervous system. Journal of Physiology, 2006, 572, 323-334.	2.9	54
39	Oscillatory Circuits Underlying Locomotor Networks in the Rat Spinal Cord. Critical Reviews in Neurobiology, 2006, 18, 25-36.	3.1	18
40	Activation of group I metabotropic glutamate receptors depresses recurrent inhibition of motoneurons in the neonatal rat spinal cord in vitro. Experimental Brain Research, 2005, 164, 406-410.	1.5	7
41	Characteristics of the electrical oscillations evoked by 4-aminopyridine on dorsal root fibers and their relation to fictive locomotor patterns in the rat spinal cord in vitro. Neuroscience, 2005, 132, 1187-1197.	2.3	15
42	Electrophysiological effects of 4-aminopyridine on fictive locomotor activity of the rat spinal cord in vitro. Acta Neurochirurgica Supplementum, 2005, 93, 151-154.	1.0	2
43	Modulation of rhythmic patterns and cumulative depolarization by group I metabotropic glutamate receptors in the neonatal rat spinal cord in vitro. European Journal of Neuroscience, 2004, 19, 533-541.	2.6	32
44	Role of group II and III metabotropic glutamate receptors in rhythmic patterns of the neonatal rat spinal cord in vitro. Experimental Brain Research, 2004, 156, 495-504.	1.5	14
45	Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro. Neuroscience, 2004, 126, 511-520.	2.3	16
46	Effect of metabotropic glutamate receptor activity on rhythmic discharges of the neonatal rat spinal cord in vitro. Experimental Brain Research, 2003, 153, 388-393.	1.5	17
47	Distinct subtypes of group I metabotropic glutamate receptors on rat spinal neurons mediate complex facilitatory and inhibitory effects. European Journal of Neuroscience, 2003, 18, 1873-1883.	2.6	23
48	AMPA-evoked acetylcholine release from cultured spinal cord motoneurons and its inhibition by GABA and glycine. Neuroscience, 2001, 106, 183-191.	2.3	13