List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8461231/publications.pdf Version: 2024-02-01

		24978	9553
147	25,362	57	142
papers	citations	h-index	g-index
151	151	151	33155
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	N-methyl-D-aspartate receptor functions altered by neuronal PTP1B activation in Alzheimer's disease and schizophrenia models. Neural Regeneration Research, 2022, 17, 2208.	1.6	1
2	Revisiting the MMTV Zoonotic Hypothesis to Account for Geographic Variation in Breast Cancer Incidence. Viruses, 2022, 14, 559.	1.5	11
3	Neuronal protein-tyrosine phosphatase 1B hinders sensory-motor functional recovery and causes affective disorders in two different focal ischemic stroke models. Neural Regeneration Research, 2021, 16, 129.	1.6	6
4	Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease. PLoS Genetics, 2021, 17, e1009679.	1.5	17
5	Ketamine's schizophrenia-like effects are prevented by targeting PTP1B. Neurobiology of Disease, 2021, 155, 105397.	2.1	11
6	Tyrosine phosphatase PTP1B impairs presynaptic NMDA receptor-mediated plasticity in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2021, 156, 105402.	2.1	11
7	IRF2BP2 3′UTR Polymorphism Increases Coronary Artery Calcification in Men. Frontiers in Cardiovascular Medicine, 2021, 8, 687645.	1.1	3
8	Neuronal Protein Tyrosine Phosphatase 1B Hastens Amyloid β-Associated Alzheimer's Disease in Mice. Journal of Neuroscience, 2020, 40, 1581-1593.	1.7	40
9	Association of Factor V Leiden With Subsequent Atherothrombotic Events. Circulation, 2020, 142, 546-555.	1.6	11
10	Activation of tyrosine phosphatase PTP1B in pyramidal neurons impairs endocannabinoid signaling by tyrosine receptor kinase trkB and causes schizophrenia-like behaviors in mice. Neuropsychopharmacology, 2020, 45, 1884-1895.	2.8	11
11	Hyperactivated PTP1B phosphatase in parvalbumin neurons alters anterior cingulate inhibitory circuits and induces autism-like behaviors. Nature Communications, 2020, 11, 1017.	5.8	20
12	Activation of tyrosine phosphatases in the progression of Alzheimer's disease. Neural Regeneration Research, 2020, 15, 2245.	1.6	6
13	Subsequent Event Risk in Individuals With Established Coronary Heart Disease. Circulation Genomic and Precision Medicine, 2019, 12, e002470.	1.6	17
14	Association of Chromosome 9p21 With Subsequent Coronary Heart Disease Events. Circulation Genomic and Precision Medicine, 2019, 12, e002471.	1.6	22
15	Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2019, 73, 58-66.	1.2	147
16	Atherosclerosis: A Longue Durée Approach. Global Heart, 2019, 9, 239.	0.9	5
17	Dabrafenib, an inhibitor of RIP3 kinase-dependent necroptosis, reduces ischemic brain injury. Neural Regeneration Research, 2018, 13, 252.	1.6	57
18	Loss of Cardioprotective Effects at the <i>ADAMTS7</i> Locus as a Result of Gene-Smoking Interactions. Circulation, 2017, 135, 2336-2353.	1.6	51

#	Article	IF	CITATIONS
19	Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study. Lancet Diabetes and Endocrinology,the, 2017, 5, 534-543.	5.5	84
20	Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurology, The, 2017, 16, 898-907.	4.9	191
21	IRF2BP2-deficient microglia block the anxiolytic effect of enhanced postnatal care. Scientific Reports, 2017, 7, 9836.	1.6	14
22	Partitioning the heritability of coronary artery disease highlights the importance of immune-mediated processes and epigenetic sites associated with transcriptional activity. Cardiovascular Research, 2017, 113, 973-983.	1.8	31
23	Loss of IRF2BP2 in Microglia Increases Inflammation and Functional Deficits after Focal Ischemic Brain Injury. Frontiers in Cellular Neuroscience, 2017, 11, 201.	1.8	38
24	Interferon regulatory factor 2 binding protein 2: a new player of the innate immune response for stroke recovery. Neural Regeneration Research, 2017, 12, 1762.	1.6	7
25	No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis. Scientific Reports, 2016, 6, 35278.	1.6	25
26	Transcriptomic Signature of Atherosclerosis in the Peripheral Blood: Fact or Fiction?. Current Atherosclerosis Reports, 2016, 18, 77.	2.0	16
27	Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nature Communications, 2016, 7, 10558.	5.8	108
28	Increased genetic risk for obesity in premature coronary artery disease. European Journal of Human Genetics, 2016, 24, 587-591.	1.4	25
29	Systems Genetics Analysis of Genome-Wide Association Study Reveals Novel Associations Between Key Biological Processes and Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1712-1722.	1.1	72
30	Endothelial Gata5 transcription factor regulates blood pressure. Nature Communications, 2015, 6, 8835.	5.8	35
31	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	13.7	1,328
32	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	13.7	3,823
33	Functional properties of Claramine: A novel PTP1B inhibitor and insulin-mimetic compound. Biochemical and Biophysical Research Communications, 2015, 458, 21-27.	1.0	60
34	Making Sense of Genome-Wide Association Studies. Circulation, 2015, 131, 519-521.	1.6	1
35	Chronic Stress Induces Anxiety via an Amygdalar Intracellular Cascade that Impairs Endocannabinoid Signaling. Neuron, 2015, 85, 1319-1331.	3.8	81
36	IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis. Circulation Research, 2015, 117, 671-683.	2.0	64

#	Article	IF	CITATIONS
37	Effect of Bile Acid Sequestrants on the Risk of Cardiovascular Events. Circulation: Cardiovascular Genetics, 2015, 8, 618-627.	5.1	61
38	Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nature Genetics, 2015, 47, 1282-1293.	9.4	294
39	Circulating Brainâ€Derived Neurotrophic Factor Concentrations and the Risk of Cardiovascular Disease in the Community. Journal of the American Heart Association, 2015, 4, e001544.	1.6	107
40	9p21.3 Coronary Artery Disease Risk Variants Disrupt TEAD Transcription Factor–Dependent Transforming Growth Factor β Regulation of p16 Expression in Human Aortic Smooth Muscle Cells. Circulation, 2015, 132, 1969-1978.	1.6	47
41	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	9.4	2,054
42	Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurology: Genetics, 2015, 1, e10.	0.9	61
43	Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 2015, 518, 102-106.	13.7	581
44	Plasma PCSK9 Levels Are Elevated with Acute Myocardial Infarction in Two Independent Retrospective Angiographic Studies. PLoS ONE, 2014, 9, e106294.	1.1	75
45	Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease. PLoS Genetics, 2014, 10, e1004502.	1.5	192
46	Adiposity significantly modifies genetic risk for dyslipidemia. Journal of Lipid Research, 2014, 55, 2416-2422.	2.0	33
47	Is atherosclerosis fundamental to human aging? Lessons from ancient mummies. Journal of Cardiology, 2014, 63, 329-334.	0.8	27
48	Shared Genetic Susceptibility to Ischemic Stroke and Coronary Artery Disease. Stroke, 2014, 45, 24-36.	1.0	302
49	LMO4 Is Essential for Paraventricular Hypothalamic Neuronal Activity and Calcium Channel Expression to Prevent Hyperphagia. Journal of Neuroscience, 2014, 34, 140-148.	1.7	14
50	Comparative Genome-Wide Association Studies in Mice and Humans for Trimethylamine <i>N</i> -Oxide, a Proatherogenic Metabolite of Choline and <scp>l</scp> -Carnitine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1307-1313.	1.1	119
51	LMO4 is required to maintain hypothalamic insulin signaling. Biochemical and Biophysical Research Communications, 2014, 450, 666-672.	1.0	22
52	SPG7 Variant Escapes Phosphorylation-Regulated Processing by AFG3L2, Elevates Mitochondrial ROS, and Is Associated with Multiple Clinical Phenotypes. Cell Reports, 2014, 7, 834-847.	2.9	39
53	Functional Genomics of the 9p21.3 Locus for Atherosclerosis: Clarity or Confusion?. Current Cardiology Reports, 2014, 16, 502.	1.3	39
54	Genomic Correlates of Atherosclerosis in Ancient Humans. Global Heart, 2014, 9, 203.	0.9	20

#	Article	IF	CITATIONS
55	Why Did Ancient People Have Atherosclerosis? From Autopsies to Computed Tomography to Potential Causes. Global Heart, 2014, 9, 229.	0.9	35
56	Interferon-Î ³ Activates Expression of p15 and p16 Regardless of 9p21.3 Coronary Artery Disease Risk Genotype. Journal of the American College of Cardiology, 2013, 61, 143-147.	1.2	37
57	Genomics in Cardiovascular Disease. Journal of the American College of Cardiology, 2013, 61, 2029-2037.	1.2	37
58	The LIM Domain Only 4 Protein Is a Metabolic Responsive Inhibitor of Protein Tyrosine Phosphatase 1B That Controls Hypothalamic Leptin Signaling. Journal of Neuroscience, 2013, 33, 12647-12655.	1.7	47
59	Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 2013, 45, 25-33.	9.4	1,439
60	Assessment of the 9p21.3 locus in severity of coronary artery disease in the presence and absence of type 2 diabetes. BMC Medical Genetics, 2013, 14, 11.	2.1	24
61	Two Chromosome 9p21 Haplotype Blocks Distinguish Between Coronary Artery Disease and Myocardial Infarction Risk. Circulation: Cardiovascular Genetics, 2013, 6, 372-380.	5.1	25
62	Rare Copy Number Variants Contribute to Congenital Left-Sided Heart Disease. PLoS Genetics, 2012, 8, e1002903.	1.5	119
63	Clinical and Genetic Association of Serum Paraoxonase and Arylesterase Activities With Cardiovascular Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2803-2812.	1.1	153
64	The genetics of coronary artery disease. Current Opinion in Cardiology, 2012, 27, 221-227.	0.8	34
65	Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease: meta-analysis of genome-wide association studies from five community-based studies. European Heart Journal, 2012, 33, 238-251.	1.0	89
66	Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet, The, 2012, 379, 1705-1711.	6.3	341
67	Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet, The, 2012, 380, 572-580.	6.3	1,937
68	9p21 and the Genetic Revolution for Coronary Artery Disease. Clinical Chemistry, 2012, 58, 104-112.	1.5	53
69	Genomics: Is It Ready for Primetime?. Medical Clinics of North America, 2012, 96, 113-122.	1.1	2
70	Tail-anchored membrane protein SLMAP is a novel regulator of cardiac function at the sarcoplasmic reticulum. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1138-H1145.	1.5	23
71	278 Plasma PCSK9 Levels Do Not Predict Angiographic Coronary Artery Disease But Associate With The Risk Of Myocardial Infarction In Women Independent Of LDL Cholesterol. Canadian Journal of Cardiology, 2012, 28, S195-S196.	0.8	0
72	Genes and Coronary Artery Disease. Journal of the American College of Cardiology, 2012, 60, 1715-1721.	1.2	134

#	Article	IF	CITATIONS
73	A Genome-Wide Association Study for Coronary Artery Disease Identifies a Novel Susceptibility Locus in the Major Histocompatibility Complex. Circulation: Cardiovascular Genetics, 2012, 5, 217-225.	5.1	125
74	Clinical and Genetic Association of Serum Ceruloplasmin With Cardiovascular Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 516-522.	1.1	54
75	Genetics of Coronary Artery Disease in the 21st Century. Clinical Cardiology, 2012, 35, 536-540.	0.7	24
76	Homocysteine and Coronary Heart Disease: Meta-analysis of MTHFR Case-Control Studies, Avoiding Publication Bias. PLoS Medicine, 2012, 9, e1001177.	3.9	167
77	Recent success in the discovery of coronary artery disease genes. Canadian Journal of Physiology and Pharmacology, 2011, 89, 609-615.	0.7	10
78	Identification of a Phosphorylation-Dependent Nuclear Localization Motif in Interferon Regulatory Factor 2 Binding Protein 2. PLoS ONE, 2011, 6, e24100.	1.1	21
79	332 Genetic testing for cyp2c19*2 but not for pon-1 qq carrier status predicts high on-clopidogrel platelet reactivity in patients undergoing percutaneous coronary interventions. Canadian Journal of Cardiology, 2011, 27, S183.	0.8	1
80	Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes. Diabetes, 2011, 60, 2624-2634.	0.3	335
81	Mouse viruses and human disease. Lancet Infectious Diseases, The, 2011, 11, 264-265.	4.6	2
82	Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet, The, 2011, 377, 383-392.	6.3	466
83	Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genetics, 2011, 43, 333-338.	9.4	1,685
84	Large-Scale Gene-Centric Analysis Identifies Novel Variants for Coronary Artery Disease. PLoS Genetics, 2011, 7, e1002260.	1.5	203
85	Abdominal Aortic Aneurysm Is Associated with a Variant in Low-Density Lipoprotein Receptor-Related Protein 1. American Journal of Human Genetics, 2011, 89, 619-627.	2.6	185
86	Blood Pressure Loci Identified with a Gene-Centric Array. American Journal of Human Genetics, 2011, 89, 688-700.	2.6	159
87	Identification of a Novel Muscle A-type Lamin-interacting Protein (MLIP). Journal of Biological Chemistry, 2011, 286, 19702-19713.	1.6	28
88	Rare Copy Number Variation Discovery and Cross-Disorder Comparisons Identify Risk Genes for ADHD. Science Translational Medicine, 2011, 3, 95ra75.	5.8	304
89	RANTES/CCL5 and Risk for Coronary Events: Results from the MONICA/KORA Augsburg Case-Cohort, Athero-Express and CARDIoGRAM Studies. PLoS ONE, 2011, 6, e25734.	1.1	40
90	A Genomic Revolution for Cardiovascular Disease—A Progress Report at Five Years. The American Heart Hospital Journal, 2011, 9, 19.	0.2	0

#	Article	IF	CITATIONS
91	The transcription factor GATA-2 does not associate with angiographic coronary artery disease in the Ottawa Heart Genomics and Cleveland Clinic GeneBank Studies. Human Genetics, 2010, 127, 101-105.	1.8	13
92	The Genome-Wide Association Study—A New Era for Common Polygenic Disorders. Journal of Cardiovascular Translational Research, 2010, 3, 173-182.	1.1	26
93	IRF2BP2 is a skeletal and cardiac muscleâ€enriched ischemiaâ€inducible activator of VEGFA expression. FASEB Journal, 2010, 24, 4825-4834.	0.2	2
94	IRF2BP2 is a skeletal and cardiac muscle-enriched ischemia-inducible activator of VEGFA expression. FASEB Journal, 2010, 24, 4825-4834.	0.2	58
95	Genetic Variants Influencing Circulating Lipid Levels and Risk of Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2264-2276.	1.1	369
96	Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways. Diabetes, 2010, 59, 3229-3239.	0.3	387
97	Improved Prediction of Cardiovascular Disease Based on a Panel of Single Nucleotide Polymorphisms Identified Through Genome-Wide Association Studies. Circulation: Cardiovascular Genetics, 2010, 3, 468-474.	5.1	88
98	Disruption at the <i>PTCHD1</i> Locus on Xp22.11 in Autism Spectrum Disorder and Intellectual Disability. Science Translational Medicine, 2010, 2, 49ra68.	5.8	178
99	Gene Dosage of the Common Variant 9p21 Predicts Severity of Coronary Artery Disease. Journal of the American College of Cardiology, 2010, 56, 479-486.	1.2	133
100	Genomics in coronary artery disease: Past, present and future. Canadian Journal of Cardiology, 2010, 26, 56A-59A.	0.8	28
101	Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study. Circulation: Cardiovascular Genetics, 2010, 3, 475-483.	5.1	159
102	A Genome-Wide Association Study Reveals Variants in ARL15 that Influence Adiponectin Levels. PLoS Genetics, 2009, 5, e1000768.	1.5	148
103	Functional Analysis of the Chromosome 9p21.3 Coronary Artery Disease Risk Locus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1671-1677.	1.1	350
104	Left Ventricular and Myocardial Function in Mice Expressing Constitutively Pseudophosphorylated Cardiac Troponin I. Circulation Research, 2009, 105, 1232-1239.	2.0	52
105	STrengthening the REporting of Genetic Association studies (STREGA) – an extension of the STROBE statement. European Journal of Clinical Investigation, 2009, 39, 247-266.	1.7	216
106	A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nature Genetics, 2009, 41, 1182-1190.	9.4	481
107	Functional characterization of a promoter polymorphism that drives ACSL5 gene expression in skeletal muscle and associates with dietâ€induced weight loss. FASEB Journal, 2009, 23, 1705-1709.	0.2	25
108	Strengthening the reporting of genetic association studies (STREGA)—an extension of the strengthening the reporting of observational studies in epidemiology (STROBE) statement. Journal of Clinical Epidemiology, 2009, 62, 597-608.e4.	2.4	98

#	Article	IF	CITATIONS
109	Kinesin Family Member 6 Variant Trp719Arg Does Not Associate With Angiographically Defined Coronary Artery Disease in the Ottawa Heart Genomics Study. Journal of the American College of Cardiology, 2009, 53, 1471-1472.	1.2	67
110	Lack of association of chromosome 9p21.3 genotype with cardiovascular function in persons with stable coronary artery disease: The heart and soul study. Atherosclerosis, 2009, 205, 367.	0.4	0
111	STrengthening the REporting of Genetic Association studies (STREGA)—an extension of the STROBE statement. , 2009, , 188-214.		2
112	From Genes to Regenerative Medicine. Circulation Research, 2008, 103, 1050-1052.	2.0	2
113	LMO4 mRNA stability is regulated by extracellular ATP in F11 cells. Biochemical and Biophysical Research Communications, 2007, 357, 56-61.	1.0	27
114	Identifying genes for coronary artery disease: An idea whose time has come. Canadian Journal of Cardiology, 2007, 23, 7A-15A.	0.8	33
115	A Common Allele on Chromosome 9 Associated with Coronary Heart Disease. Science, 2007, 316, 1488-1491.	6.0	1,591
116	Extracellular ATP-dependent upregulation of the transcription cofactor LMO4 promotes neuron survival from hypoxia. Experimental Cell Research, 2007, 313, 3106-3116.	1.2	40
117	Somatic Mutations in the Connexin 40 Gene (GJA5) in Atrial Fibrillation. New England Journal of Medicine, 2006, 354, 2677-2688.	13.9	510
118	Angiotensin II and Stretch Activate NADPH Oxidase to Destabilize Cardiac Kv4.3 Channel mRNA. Circulation Research, 2006, 98, 1040-1047.	2.0	66
119	Clonal Isolation of Different Strains of Mouse Mammary Tumor Virus-Like DNA Sequences from Both the Breast Tumors and Non-Hodgkin's Lymphomas of Individual Patients Diagnosed with Both Malignancies. Clinical Cancer Research, 2004, 10, 5656-5664.	3.2	50
120	Gene expression changes associated with fibronectin-induced cardiac myocyte hypertrophy. Physiological Genomics, 2004, 18, 273-283.	1.0	50
121	Vgl-4, a Novel Member of the Vestigial-like Family of Transcription Cofactors, Regulates α1-Adrenergic Activation of Gene Expression in Cardiac Myocytes. Journal of Biological Chemistry, 2004, 279, 30800-30806.	1.6	97
122	Transcription Enhancer Factor-1-Related Factor-Transgenic Mice Develop Cardiac Conduction Defects Associated With Altered Connexin Phosphorylation. Circulation, 2004, 110, 2980-2987.	1.6	32
123	Troponin I protein kinase C phosphorylation sites and ventricular function. Cardiovascular Research, 2004, 63, 245-255.	1.8	22
124	Transcription cofactor Vgl-2 is required for skeletal muscle differentiation. Genesis, 2004, 39, 273-279.	0.8	60
125	Mouse DTEF-1 (ETFR-1, TEF-5) Is a Transcriptional Activator in α1-Adrenergic Agonist-stimulated Cardiac Myocytes. Journal of Biological Chemistry, 2002, 277, 24346-24352.	1.6	25
126	Mammalian Vestigial-like 2, a Cofactor of TEF-1 and MEF2 Transcription Factors That Promotes Skeletal Muscle Differentiation. Journal of Biological Chemistry, 2002, 277, 48889-48898.	1.6	158

#	Article	IF	CITATIONS
127	TEF-1 and MEF2 transcription factors interact to regulate muscle-specific promoters. Biochemical and Biophysical Research Communications, 2002, 294, 791-797.	1.0	61
128	TEF-1 transcription factors regulate activity of the mouse mammary tumor virus LTR. Biochemical and Biophysical Research Communications, 2002, 296, 1279-1285.	1.0	10
129	α1-Adrenergic activation of the cardiac ankyrin repeat protein gene in cardiac myocytes. Gene, 2002, 297, 1-9.	1.0	27
130	Identification of human homologues of the mouse mammary tumor virus receptor. Archives of Virology, 2002, 147, 577-581.	0.9	4
131	Differential expression of a transcription regulatory factor, the LIM domain only 4 protein Lmo4, in muscle sensory neurons. Development (Cambridge), 2002, 129, 4879-4889.	1.2	29
132	Differential expression of a transcription regulatory factor, the LIM domain only 4 protein Lmo4, in muscle sensory neurons. Development (Cambridge), 2002, 129, 4879-89.	1.2	15
133	Independent Regulation of Cardiac Kv4.3 Potassium Channel Expression by Angiotensin II and Phenylephrine. Circulation Research, 2001, 88, 476-482.	2.0	68
134	Reproductive factors are crucial in the aetiology of breast cancer - a reply. British Journal of Cancer, 2000, 83, 134-134.	2.9	1
135	Identification of the Functional Domain in the Transcription Factor RTEF-1 That Mediates α1-Adrenergic Signaling in Hypertrophied Cardiac Myocytes. Journal of Biological Chemistry, 2000, 275, 17476-17480.	1.6	43
136	Transcription Factor RTEF-1 Mediates α ₁ -Adrenergic Reactivation of the Fetal Gene Program in Cardiac Myocytes. Circulation Research, 1998, 83, 43-49.	2.0	73
137	Cloning of Human RTEF-1, a Transcriptional Enhancer Factor-1-Related Gene Preferentially Expressed in Skeletal Muscle: Evidence for an Ancient Multigene Family. Genomics, 1996, 37, 68-76.	1.3	41
138	α1-Adrenergic Receptor Subtype mRNAs Are Differentially Regulated by α1-Adrenergic and Other Hypertrophic Stimuli in Cardiac Myocytes in Culture and In Vivo. Journal of Biological Chemistry, 1996, 271, 5839-5843.	1.6	150
139	Cloning of the rat alpha 1C-adrenergic receptor from cardiac myocytes. alpha 1C, alpha 1B, and alpha 1D mRNAs are present in cardiac myocytes but not in cardiac fibroblasts Circulation Research, 1994, 75, 796-802.	2.0	100
140	Distribution of α1C-Adrenergic Receptor mRNA in Adult-Rat Tissues by RNase Protection Assay and Comparison with α1B and α1D. Biochemical and Biophysical Research Communications, 1994, 200, 1177-1184.	1.0	125
141	Activation of alpha-myosin heavy chain gene expression by cAMP in cultured fetal rat heart myocytes. Biochemical and Biophysical Research Communications, 1991, 174, 1196-1203.	1.0	38
142	Structural and phylogenetic analysis of the chicken ventricular myosin heavy chain rod. Journal of Molecular Evolution, 1991, 33, 357-366.	0.8	26
143	Myofibrillar Proteins in the Developing Heart. Annals of the New York Academy of Sciences, 1990, 588, 216-224.	1.8	4
144	A myosin isoform repressed in hypertrophied ALD muscle of the chicken reappears during regeneration following cold injury. Developmental Biology, 1989, 135, 367-375.	0.9	20

#	ARTICLE	IF	CITATIONS
145	Genetics of Atherosclerosis. , 0, , 151-166.		2
146	Characterization of Cardiac Gene Promoter Activity: Reporter Constructs and Heterologous Promoter Studies. , 0, , 217-226.		0
147	Savior Siblings Might Rescue Fetal Lethality But Not Adult Lymphoma in Irf2bp2-Null Mice. Frontiers in Immunology, 0, 13, .	2.2	1