List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8460978/publications.pdf Version: 2024-02-01

TEDESA RANDOSZ

#	Article	IF	CITATIONS
1	Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy and Environment, 2022, 7, 1024-1032.	4.7	17
2	Revealing the impact of small pores on oxygen reduction on carbon electrocatalysts: A journey through recent findings. Carbon, 2022, 188, 289-304.	5.4	24
3	Oxygen adsorption in pores promotes its reduction on metal-free carbon catalysts: A case of carbon blacks. Carbon, 2022, 189, 230-239.	5.4	11
4	Effect of amine type on acidic toxic gas adsorption at ambient conditions on modified CuBTC. Journal of Environmental Chemical Engineering, 2022, 10, 107261.	3.3	7
5	Insight into the mechanism of perfluorooctanesulfonic acid adsorption on highly porous media: Sizes of hydrophobic pores and the extent of multilayer formation. Carbon, 2022, 191, 535-545.	5.4	10
6	Complexity of Biosolid-Derived Electrocatalysts Grants Their Excellent Performance in Oxygen Reduction Reaction. ACS Applied Energy Materials, 2022, 5, 3514-3524.	2.5	0
7	Biochemical changes in cancer cells induced by photoactive nanosystem based on carbon dots loaded with Ru-complex. Chemico-Biological Interactions, 2022, 360, 109950.	1.7	4
8	Empowering carbon materials robust gas desulfurization capability through an inclusion of active inorganic phases: A review of recent approaches. Journal of Hazardous Materials, 2022, 437, 129414.	6.5	11
9	FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15, 279-287.	2.3	23
10	Boosting the Photoactivity of Grafted Titania: Ultrasoundâ€Driven Synthesis of a Multiâ€Phase Heterogeneous Nanoâ€Architected Photocatalyst. Advanced Functional Materials, 2021, 31, .	7.8	23
11	Inorganic matter in rice husk derived carbon and its effect on the capacitive performance. Journal of Energy Chemistry, 2021, 57, 639-649.	7.1	10
12	Proposing an unbiased oxygen reduction reaction onset potential determination by using a Savitzky-Golay differentiation procedure. Journal of Colloid and Interface Science, 2021, 586, 597-600.	5.0	20
13	Porous Carbons as Oxygen Reduction Electrocatalysts. Engineering Materials, 2021, , 41-77.	0.3	0
14	Exploring the Silent Aspect of Carbon Nanopores. Nanomaterials, 2021, 11, 407.	1.9	13
15	Alternative view of oxygen reduction on porous carbon electrocatalysts: The substance of complex oxygen-surface interactions. IScience, 2021, 24, 102216.	1.9	13
16	Chemically heterogeneous carbon dots enhanced cholesterol detection by MALDI TOF mass spectrometry. Journal of Colloid and Interface Science, 2021, 591, 373-383.	5.0	18
17	Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors. Chemical Engineering Journal, 2021, 415, 128907.	6.6	17
18	Exploring the effect of surface chemistry in carbon nanopores on melting behavior of water. Carbon, 2021, 185, 252-263.	5.4	4

#	Article	IF	CITATIONS
19	The effect of ZnFe2O4/activated carbon adsorbent photocatalytic activity on gas-phase desulfurization. Chemical Engineering Journal, 2021, 423, 130255.	6.6	20
20	Analyzing the effect of nitrogen/sulfur groups' density ratio in porous carbons on the efficiency of CO2 electrochemical reduction. Applied Surface Science, 2021, 569, 151066.	3.1	6
21	Composite porous carbon textile with deposited barium titanate nanospheres as wearable protection medium against toxic vapors. Chemical Engineering Journal, 2020, 384, 123280.	6.6	23
22	Solar light-driven photocatalytic degradation of phenol on S-doped nanoporous carbons: The role of functional groups in governing activity and selectivity. Carbon, 2020, 156, 10-23.	5.4	46
23	Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors. ACS Applied Materials & Interfaces, 2020, 12, 14678-14689.	4.0	44
24	Exploring the options for the improvement of H2S adsorption on sludge derived adsorbents: Building the composite with porous carbons. Journal of Cleaner Production, 2020, 249, 119412.	4.6	23
25	Support features govern the properties of the active phase and the performance of bifunctional ZnFe2O4-based H2S adsorbents. Carbon, 2020, 169, 327-337.	5.4	21
26	Enhancing the gas adsorption capacities of UiO-66 by nanographite addition. Microporous and Mesoporous Materials, 2020, 309, 110571.	2.2	11
27	Pyrolyzed biosolid surface features promote a highly efficient oxygen reduction reaction. Green Chemistry, 2020, 22, 7858-7870.	4.6	8
28	Ni-doped hierarchical porous carbon with a p/n-junction promotes electrochemical water splitting. International Journal of Hydrogen Energy, 2020, 45, 17493-17503.	3.8	10
29	Effect of the Incorporation of Functionalized Cellulose Nanocrystals into UiOâ€66 on Composite Porosity and Surface Heterogeneity Alterations. Advanced Materials Interfaces, 2020, 7, 1902098.	1.9	15
30	Engaging nanoporous carbons in "beyond adsorption―applications: Characterization, challenges and performance. Carbon, 2020, 164, 69-84.	5.4	41
31	Surfactant-modified biosolid-derived materials as efficient H2S removal media: Synergistic effects of carbon phase properties and inorganic phase chemistry on reactive adsorption. Chemical Engineering Journal, 2020, 401, 125986.	6.6	9
32	Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation. Applied Catalysis B: Environmental, 2020, 266, 118674.	10.8	109
33	Activated carbon with heteroatoms from organic salt for hydrogen evolution reaction. Microporous and Mesoporous Materials, 2020, 297, 110033.	2.2	14
34	ZnFe2O4/activated carbon as a regenerable adsorbent for catalytic removal of H2S from air at room temperature. Chemical Engineering Journal, 2020, 394, 124906.	6.6	86
35	Detoxification of mustard gas surrogate on ZnO2/g-C3N4 composites: Effect of surface features' synergy and day-night photocatalysis. Applied Catalysis B: Environmental, 2020, 272, 119038. 	10.8	39
36	Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors. Chemical Engineering Journal, 2020, 395, 125099.	6.6	54

#	Article	IF	CITATIONS
37	Nanoporous carbon materials: from char to sophisticated 3-D graphene-like structures. , 2020, , 45-64.		3
38	TiO2/S-Doped Carbons Hybrids: Analysis of Their Interfacial and Surface Features. Molecules, 2019, 24, 3585.	1.7	8
39	Insight into the Mechanism of Oxygen Reduction Reaction on Micro/Mesoporous Carbons: Ultramicropores versus Nitrogen-Containing Catalytic Centers in Ordered Pore Structure. ACS Applied Energy Materials, 2019, 2, 7412-7424.	2.5	32
40	Analysis of interactions of mustard gas surrogate vapors with porous carbon textiles. Chemical Engineering Journal, 2019, 362, 758-766.	6.6	45
41	Combination of alkalinity and porosity enhances formaldehyde adsorption on pig manure -derived composite adsorbents. Microporous and Mesoporous Materials, 2019, 286, 155-162.	2.2	26
42	Graphite Oxide Nanocomposites for Air Stream Desulfurization. , 2019, , 1-24.		4
43	Magnetic soot: Surface properties and application to remove oil contamination from water. Journal of Environmental Chemical Engineering, 2019, 7, 103074.	3.3	15
44	Evaluation of nitrogen- and sulfur-doped porous carbon textiles as electrode materials for flexible supercapacitors. Electrochimica Acta, 2019, 305, 125-136.	2.6	31
45	Exploring resistance changes of porous carbon upon physical adsorption of VOCs. Carbon, 2019, 146, 568-571.	5.4	25
46	Ultramicropore-influenced mechanism of oxygen electroreduction on metal-free carbon catalysts. Journal of Materials Chemistry A, 2019, 7, 27110-27123.	5.2	27
47	Building MOF Nanocomposites with Oxidized Graphitic Carbon Nitride Nanospheres: The Effect of Framework Geometry on the Structural Heterogeneity. Molecules, 2019, 24, 4529.	1.7	14
48	Degradation of endocrine disruptor, bisphenol-A, on an mixed oxidation state manganese oxide/modified graphite oxide composite: A role of carbonaceous phase. Journal of Colloid and Interface Science, 2019, 539, 516-524.	5.0	39
49	Fingerprint imaging using N-doped carbon dots. Carbon, 2019, 144, 791-797.	5.4	64
50	Oxygen Electroreduction on Nanoporous Carbons: Textural Features vs Nitrogen and Boron Catalytic Centers. ChemCatChem, 2019, 11, 851-860.	1.8	28
51	Nitrogen-containing activated carbon of improved electrochemical performance derived from cotton stalks using indirect chemical activation. Journal of Colloid and Interface Science, 2019, 540, 285-294.	5.0	24
52	Polyoxometalate hybrid catalyst for detection and photodecomposition of mustard gas surrogate vapors. Applied Surface Science, 2019, 467-468, 428-438.	3.1	25
53	A New Generation of Surface Active Carbon Textiles As Reactive Adsorbents of Indoor Formaldehyde. ACS Applied Materials & Interfaces, 2018, 10, 8066-8076.	4.0	60
54	Chemically heterogeneous nitrogen sites of various reactivity in porous carbons provide high stability of CO2 electroreduction catalysts. Applied Catalysis B: Environmental, 2018, 234, 1-9.	10.8	38

#	Article	IF	CITATIONS
55	S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity. Carbon, 2018, 135, 104-111.	5.4	244
56	CaTiO3 perovskite in the framework of activated carbon and its effect on enhanced electrochemical capacitance. Electrochimica Acta, 2018, 268, 73-81.	2.6	29
57	Exploring the effects of surface chemistry on photosensitivity and stability of modified porous carbon textiles. Carbon, 2018, 131, 1-9.	5.4	5
58	Path Towards Future Research. , 2018, , 125-144.		0
59	Irreversible water mediated transformation of BCN from a 3D highly porous form to its nonporous hydrolyzed counterpart. Journal of Materials Chemistry A, 2018, 6, 3510-3521.	5.2	35
60	Zinc peroxide nanoparticles: Surface, chemical and optical properties and the effect of thermal treatment on the detoxification of mustard gas. Applied Catalysis B: Environmental, 2018, 226, 429-440.	10.8	51
61	Detoxification of Chemical Warfare Agents. , 2018, , .		17
62	Exploring the effect of ultramicropore distribution on gravimetric capacitance of nanoporous carbons. Electrochimica Acta, 2018, 275, 236-247.	2.6	30
63	Electrodeposited P Co nanoparticles in deep eutectic solvents and their performance in water splitting. International Journal of Hydrogen Energy, 2018, 43, 10448-10457.	3.8	22
64	Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal–Organic Framework Composites. ACS Applied Bio Materials, 2018, 1, 693-707.	2.3	80
65	Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons. Advanced Science, 2018, 5, 1800293.	5.6	45
66	Barium titanate perovskite nanoparticles as a photoreactive medium for chemical warfare agent detoxification. Journal of Colloid and Interface Science, 2018, 531, 233-244.	5.0	37
67	Removal of formaldehyde on carbon -based materials: A review of the recent approaches and findings. Carbon, 2018, 137, 207-221.	5.4	124
68	Role of sulfur and nitrogen surface groups in adsorption of formaldehyde on nanoporous carbons. Carbon, 2018, 138, 283-291.	5.4	74
69	Role of Heteroatoms in S,N odoped Nanoporous Carbon Materials in CO ₂ (Photo)electrochemical Reduction. ChemSusChem, 2018, 11, 2987-2999.	3.6	22
70	New Approaches in the Detoxification of CWAs. , 2018, , 37-123.		1
71	Current Protection Against CWAs. , 2018, , 33-36.		0
72	Mixed CuFe and ZnFe (hydr)oxides as reactive adsorbents of chemical warfare agent surrogates. Journal of Hazardous Materials, 2017, 329, 141-149.	6.5	25

#	Article	IF	CITATIONS
73	Ferrihydrite deposited on cotton textiles as protection media against the chemical warfare agent surrogate (2-chloroethyl ethyl sulfide). Journal of Materials Chemistry A, 2017, 5, 4972-4981.	5.2	29
74	N-doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media. Carbon, 2017, 117, 228-239.	5.4	52
75	Pyridinic-N groups and ultramicropore nanoreactors enhance CO2 electrochemical reduction on porous carbon catalysts. Applied Catalysis B: Environmental, 2017, 207, 195-206.	10.8	91
76	Alterations in the surface features of S-doped carbon and g-C ₃ N ₄ photocatalysts in the presence of CO ₂ and water upon visible light exposure. Journal of Materials Chemistry A, 2017, 5, 16315-16325.	5.2	28
77	Nanoporous carbon-composites as gas sensors: Importance of the specific adsorption forces for ammonia sensing mechanism. Carbon, 2017, 121, 114-126.	5.4	27
78	Porous carbon modified with sulfur in energy related applications. Carbon, 2017, 118, 561-577.	5.4	77
79	Toxic gas sensing on nanoporous carbons. Adsorption, 2017, 23, 271-280.	1.4	2
80	Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon, 2017, 114, 544-556.	5.4	54
81	Combined Effect of Porosity and Surface Chemistry on the Electrochemical Reduction of Oxygen on Cellular Vitreous Carbon Foam Catalyst. ACS Catalysis, 2017, 7, 7466-7478.	5.5	42
82	Mustard Gas Surrogate Interactions with Modified Porous Carbon Fabrics: Effect of Oxidative Treatment. Langmuir, 2017, 33, 11475-11483.	1.6	30
83	Editorial: Positive developments for JCIS. Journal of Colloid and Interface Science, 2017, 505, A1-A2.	5.0	0
84	Carbon Textiles Modified with Copper-Based Reactive Adsorbents as Efficient Media for Detoxification of Chemical Warfare Agents. ACS Applied Materials & amp; Interfaces, 2017, 9, 26965-26973.	4.0	26
85	Smart textiles of MOF/g-C ₃ N ₄ nanospheres for the rapid detection/detoxification of chemical warfare agents. Nanoscale Horizons, 2017, 2, 356-364.	4.1	105
86	Photosensitivity of g-C ₃ N ₄ /S-doped carbon composites: study of surface stability upon exposure to CO ₂ and/or water in ambient light. Journal of Materials Chemistry A, 2017, 5, 24880-24891.	5.2	17
87	Carbon dots coated with vitamin B 12 as selective ratiometric nanosensor for phenolic carbofuran. Sensors and Actuators B: Chemical, 2017, 239, 553-561.	4.0	48
88	Oxidized g ₃ N ₄ Nanospheres as Catalytically Photoactive Linkers in MOF/g ₃ N ₄ Composite of Hierarchical Pore Structure. Small, 2017, 13, 1601758.	5.2	109
89	The Role of Carbon on Copper–Carbon Composites for the Electrooxidation of Alcohols in an Alkaline Medium. Journal of Carbon Research, 2017, 3, 36.	1.4	5
90	Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char. Journal of Carbon Research, 2017, 3, 37.	1.4	5

#	Article	IF	CITATIONS
91	Beyond Adsorption: The Effect of Sulfur Doping on Emerging Applications of Nanoporous Carbons. Eurasian Chemico-Technological Journal, 2017, 18, 233.	0.3	0
92	Nitrogen enrichment of S-doped nanoporous carbon by g-C3N4: Insight into photosensitivity enhancement. Carbon, 2016, 107, 895-906.	5.4	28
93	Electrochemical Reduction of Oxygen on Hydrophobic Ultramicroporous PolyHIPE Carbon. ACS Catalysis, 2016, 6, 5618-5628.	5.5	67
94	Metalâ€free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO ₂ to CO and CH ₄ . ChemSusChem, 2016, 9, 606-616.	3.6	149
95	Photoactivity of gâ€C ₃ N ₄ /Sâ€Doped Porous Carbon Composite: Synergistic Effect of Composite Formation. ChemSusChem, 2016, 9, 795-799.	3.6	55
96	Effect of Ag containing (nano)particles on reactive adsorption of mustard gas surrogate on iron oxyhydroxide/graphite oxide composites under visible light irradiation. Chemical Engineering Journal, 2016, 303, 123-136.	6.6	23
97	Sulfur-mediated photochemical energy harvesting in nanoporous carbons. Carbon, 2016, 104, 253-259.	5.4	20
98	Carbon dots as fluorescent sensor for detection of explosive nitrocompounds. Carbon, 2016, 106, 171-178.	5.4	117
99	Nanoporous Carbons: Looking Beyond Their Perception as Adsorbents, Catalyst Supports and Supercapacitors. Chemical Record, 2016, 16, 205-218.	2.9	22
100	Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide. Applied Surface Science, 2016, 390, 735-743.	3.1	11
101	Highly Efficient Air Desulfurization on Self-Assembled Bundles of Copper Hydroxide Nanorods. ACS Applied Materials & Interfaces, 2016, 8, 31986-31994.	4.0	31
102	Alterations of S-doped porous carbon-rGO composites surface features upon CO2 adsorption at ambient conditions. Carbon, 2016, 107, 501-509.	5.4	33
103	Mesoporous Graphitic Carbon Nitrideâ€Based Nanospheres as Visible‣ight Active Chemical Warfare Agents Decontaminant. ChemNanoMat, 2016, 2, 268-272.	1.5	42
104	S-doped carbon aerogels/GO composites as oxygen reduction catalysts. Journal of Energy Chemistry, 2016, 25, 236-245.	7.1	50
105	Analysis of the competitive adsorption of pharmaceuticals on waste derived materials. Chemical Engineering Journal, 2016, 287, 139-147.	6.6	42
106	Nitrogen-Doped Activated Carbon-Based Ammonia Sensors: Effect of Specific Surface Functional Groups on Carbon Electronic Properties. ACS Sensors, 2016, 1, 591-599.	4.0	48
107	Sensing of NH3 on heterogeneous nanoporous carbons in the presence of humidity. Carbon, 2016, 100, 64-73.	5.4	40
108	Reactive adsorption of mustard gas surrogate on zirconium (hydr)oxide/graphite oxide composites: the role of surface and chemical features. Journal of Materials Chemistry A, 2016, 4, 1008-1019.	5.2	57

#	Article	IF	CITATIONS
109	Moisture insensitive adsorption of ammonia on resorcinol-formaldehyde resins. Journal of Hazardous Materials, 2016, 305, 96-104.	6.5	18
110	Insight into ammonia sensing on heterogeneous S- and N- co-doped nanoporous carbons. Carbon, 2016, 96, 1014-1021.	5.4	40
111	Evaluation of CO2 interactions with S-doped nanoporous carbon and its composites with a reduced GO: Effect of surface features on an apparent physical adsorption mechanism. Carbon, 2016, 98, 250-258.	5.4	51
112	Effect of GO phase in Zn(OH)2/GO composite on the extent of photocatalytic reactive adsorption of mustard gas surrogate. Applied Catalysis B: Environmental, 2016, 183, 37-46.	10.8	47
113	Evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions. Carbon, 2016, 96, 856-863.	5.4	79
114	Analysis of sulfamethoxazole and trimethoprim adsorption on sewage sludge and fish waste derived adsorbents. Microporous and Mesoporous Materials, 2016, 220, 58-72.	2.2	57
115	Oxygen reduction on chemically heterogeneous iron-containing nanoporous carbon: The effects of specific surface functionalities. Microporous and Mesoporous Materials, 2016, 221, 137-149.	2.2	13
116	Peculiar Properties of Mesoporous Synthetic Carbon/Graphene Phase Composites and their Effect on Supercapacitive Performance. ChemSusChem, 2015, 8, 1955-1965.	3.6	10
117	Sulfurâ€Doped Carbon Aerogel as a Metalâ€Free Oxygen Reduction Catalyst. ChemCatChem, 2015, 7, 2924-2931.	1.8	50
118	Copper Hydroxyl Nitrate/Graphite Oxide Composite as Superoxidant for the Decomposition/Mineralization of Organophosphateâ€Based Chemical Warfare Agent Surrogate. Advanced Materials Interfaces, 2015, 2, 1500215.	1.9	30
119	Enhanced reactive adsorption of H ₂ S on Cu–BTC/ S- and N-doped GO composites. Journal of Materials Chemistry A, 2015, 3, 8194-8204.	5.2	63
120	Carbon phase-graphite oxide composites based on solid state interactions between the components: Importance of surface chemistry and microstructure. Carbon, 2015, 95, 580-588.	5.4	8
121	Time-resolved fluorescence and ultrafast energy transfer in a zinc (hydr)oxide–graphite oxide mesoporous composite. Journal of Photonics for Energy, 2015, 5, 053084.	0.8	1
122	Reactive adsorption of pharmaceuticals on tin oxide pillared montmorillonite: Effect of visible light exposure. Chemical Engineering Journal, 2015, 259, 865-875.	6.6	32
123	Robust graphene-based monoliths of homogeneous ultramicroporosity. Carbon, 2015, 87, 87-97.	5.4	9
124	Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers. Applied Surface Science, 2015, 332, 272-280.	3.1	15
125	Activated carbon-based gas sensors: effects of surface features on the sensing mechanism. Journal of Materials Chemistry A, 2015, 3, 3821-3831.	5.2	87
126	Role of Surface Chemistry and Morphology in the Reactive Adsorption of H ₂ S on Iron (Hydr)Oxide/Graphite Oxide Composites. Langmuir, 2015, 31, 2730-2742.	1.6	50

#	Article	IF	CITATIONS
127	Adsorption of carbamazepine on sludge/fish waste derived adsorbents: Effect of surface chemistry and texture. Chemical Engineering Journal, 2015, 267, 170-181.	6.6	46
128	Removal of hydrogen sulfide at ambient conditions on cadmium/GO-based composite adsorbents. Journal of Colloid and Interface Science, 2015, 448, 573-581.	5.0	24
129	Liquid films, interfaces and colloidal dispersions. Journal of Colloid and Interface Science, 2015, 449, 1.	5.0	Ο
130	Cu–BTC MOF–graphene-based hybrid materials as low concentration ammonia sensors. Journal of Materials Chemistry A, 2015, 3, 11417-11429.	5.2	155
131	Key role of terminal hydroxyl groups and visible light in the reactive adsorption/catalytic conversion of mustard gas surrogate on zinc (hydr)oxides. Applied Catalysis B: Environmental, 2015, 174-175, 96-104.	10.8	43
132	Reactive adsorption of CEES on iron oxyhydroxide/(N-)graphite oxide composites under visible light exposure. Journal of Materials Chemistry A, 2015, 3, 17080-17090.	5.2	26
133	Effect of nanoporous carbon surface chemistry on the removal of endocrine disruptors from water phase. Journal of Colloid and Interface Science, 2015, 449, 180-191.	5.0	40
134	Effects of surface heterogeneity of cobalt oxyhydroxide/graphite oxide composites on reactive adsorption of hydrogen sulfide. Microporous and Mesoporous Materials, 2015, 204, 8-14.	2.2	32
135	Visible light enhanced removal of a sulfur mustard gas surrogate from a vapor phase on novel hydrous ferric oxide/graphite oxide composites. Journal of Materials Chemistry A, 2015, 3, 220-231.	5.2	43
136	Comparison of melamine resin and melamine network as precursors for carbon electrodes. Carbon, 2015, 81, 239-250.	5.4	29
137	Spent Coffee-Based Activated Carbons. , 2015, , 311-317.		1
138	Engineering the surface of a new class of adsorbents: Metal–organic framework/graphite oxide composites. Journal of Colloid and Interface Science, 2015, 447, 139-151.	5.0	101
139	New copper/GO based material as an efficient oxygen reduction catalyst in an alkaline medium: The role of unique Cu/rGO architecture. Applied Catalysis B: Environmental, 2015, 163, 424-435.	10.8	77
140	The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells. Journal of Applied Physics, 2014, 116, 173102.	1.1	0
141	New Cu _x S _y /nanoporous carbon composites as efficient oxygen reduction catalysts in alkaline medium. Journal of Materials Chemistry A, 2014, 2, 20164-20176.	5.2	34
142	10. Graphite oxide-MOF hybrid materials. , 2014, , 273-294.		0
143	Municipal waste conversion to hydrogen sulfide adsorbents: Investigation of the synergistic effects of sewage sludge/fish waste mixture. Chemical Engineering Journal, 2014, 237, 88-94.	6.6	39
144	Effect of amine modification on the properties of zirconium–carboxylic acid based materials and their applications as NO2 adsorbents at ambient conditions. Microporous and Mesoporous Materials, 2014, 188, 149-162.	2.2	46

#	Article	IF	CITATIONS
145	Insight into the Capacitive Performance of Sulfurâ€Doped Nanoporous Carbons Modified by Addition of Graphene Phase. Electroanalysis, 2014, 26, 109-120.	1.5	54
146	Insight into the mechanism of CO2 adsorption on Cu–BTC and its composites with graphite oxide or aminated graphite oxide. Chemical Engineering Journal, 2014, 239, 399-407.	6.6	71
147	Hybrid solar cells of micro/mesoporous Zn(OH)2 and its graphite composites sensitized by CdSe quantum dots. Journal of Photonics for Energy, 2014, 4, 043098.	0.8	3
148	Effect of Visibleâ€Light Exposure and Electrolyte Oxygen Content on the Capacitance of Sulfurâ€Doped Carbon. ChemElectroChem, 2014, 1, 565-572.	1.7	24
149	Effect of surface chemical and structural heterogeneity of copper-based MOF/graphite oxide composites on the adsorption of ammonia. Journal of Colloid and Interface Science, 2014, 417, 109-114.	5.0	51
150	Cu-BTC/Aminated Graphite Oxide Composites As High-Efficiency CO ₂ Capture Media. ACS Applied Materials & Interfaces, 2014, 6, 101-108.	4.0	89
151	Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite. Bioresource Technology, 2014, 152, 399-406.	4.8	110
152	Zinc (hydr)oxide/graphite oxide/AuNPs composites: Role of surface features in H2S reactive adsorption. Journal of Colloid and Interface Science, 2014, 436, 296-305.	5.0	35
153	Carbon dots obtained using hydrothermal treatment of formaldehyde. Cell imaging in vitro. Nanoscale, 2014, 6, 9071-9077.	2.8	79
154	Effect of visible light and electrode wetting on the capacitive performance of S- and N-doped nanoporous carbons: Importance of surface chemistry. Carbon, 2014, 78, 540-558.	5.4	37
155	Nanoporous carbons as gas sensors: Exploring the surface sensitivity. Carbon, 2014, 80, 183-192.	5.4	23
156	Luminescent carbon nanoparticles: effects of chemical functionalization, and evaluation of Ag+ sensing properties. Journal of Materials Chemistry A, 2014, 2, 8342.	5.2	92
157	Carbon Coated Silica Doped With Cerium/Zirconium Mixed Oxides as NO ₂ Adsorbent at Ambient Conditions. Journal of Physical Chemistry C, 2014, 118, 8982-8992.	1.5	4
158	Visible light driven photoelectrochemical water splitting on metal free nanoporous carbon promoted by chromophoric functional groups. Carbon, 2014, 79, 432-441.	5.4	47
159	The effects of activated carbon surface features on the reactive adsorption of carbamazepine and sulfamethoxazole. Carbon, 2014, 80, 419-432.	5.4	154
160	Confined space reduced graphite oxide doped with sulfur as metal-free oxygen reduction catalyst. Carbon, 2014, 66, 227-233.	5.4	54
161	Effect of the graphene phase presence in nanoporous S-doped carbon on photoactivity in UV and visible light. Applied Catalysis B: Environmental, 2014, 147, 842-850.	10.8	23
162	Photoluminescence of nanoporous carbons: Opening a new application route for old materials. Carbon, 2014, 77, 651-659.	5.4	25

#	Article	IF	CITATIONS
163	On the photoactivity of S-doped nanoporous carbons: Importance of surface chemistry and porosity. Chinese Journal of Catalysis, 2014, 35, 807-814.	6.9	10
164	Complexity of CO2 adsorption on nanoporous sulfur-doped carbons – Is surface chemistry an important factor?. Carbon, 2014, 74, 207-217.	5.4	109
165	Desulfurization of Model Diesel Fuel on Activated Carbon Modified with Iron Oxyhydroxide Nanoparticles: Effect of <i>tert</i> Butylbenzene and Naphthalene Concentrations. Energy & Fuels, 2013, 27, 5380-5387.	2.5	24
166	Insight into the role of the oxidized graphite precursor on the properties of copper-based MOF/graphite oxide composites. Microporous and Mesoporous Materials, 2013, 179, 205-211.	2.2	25
167	Aminated graphite oxides and their composites with copper-based metal–organic framework: in search for efficient media for CO2 sequestration. RSC Advances, 2013, 3, 9932.	1.7	59
168	Analysis of factors affecting visible and UV enhanced oxidation of dibenzothiophenes on sulfur-doped activated carbons. Carbon, 2013, 62, 356-364.	5.4	25
169	Ce(III) Doped Zr-Based MOFs as Excellent NO ₂ Adsorbents at Ambient Conditions. ACS Applied Materials & Interfaces, 2013, 5, 10565-10573.	4.0	165
170	Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal. Journal of Chemical Physics, 2013, 139, 194707.	1.2	23
171	Reactive adsorption of ammonia and ammonia/water on CuBTC metal-organic framework: A ReaxFF molecular dynamics simulation. Journal of Chemical Physics, 2013, 138, 034102.	1.2	38
172	Interactions of NO ₂ with Zr-Based MOF: Effects of the Size of Organic Linkers on NO ₂ Adsorption at Ambient Conditions. Langmuir, 2013, 29, 168-174.	1.6	128
173	Reactive adsorption of hydrogen sulfide on visible light photoactive zinc (hydr)oxide/graphite oxide and zinc (hydr)oxychloride/graphite oxide composites. Applied Catalysis B: Environmental, 2013, 132-133, 321-331.	10.8	43
174	Visible light photoactivity of sulfur and phosphorus doped nanoporous carbons in oxidation of dibenzothiophenes. Fuel, 2013, 108, 846-849.	3.4	28
175	Analysis of the chemical and physical factors affecting reactive adsorption of ammonia on graphene/nanoporous carbon composites. Carbon, 2013, 55, 176-184.	5.4	20
176	Enhanced adsorption of hydrogen sulfide on mixed zinc/cobalt hydroxides: Effect of morphology and an increased number of surface hydroxyl groups. Journal of Colloid and Interface Science, 2013, 405, 218-225.	5.0	27
177	Involvement of water and visible light in the enhancement in SO2 adsorption at ambient conditions on the surface of zinc (hydr)oxide/graphite oxide composites. Chemical Engineering Journal, 2013, 223, 442-453.	6.6	12
178	Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles. Journal of Hazardous Materials, 2013, 246-247, 300-309.	6.5	56
179	Superior Performance of Copper Based MOF and Aminated Graphite Oxide Composites as CO ₂ Adsorbents at Room Temperature. ACS Applied Materials & Interfaces, 2013, 5, 4951-4959.	4.0	93
180	Effects of Carbon Phase Deposition in Silica Gel Pores on NO2 Reactive Adsorption at Ambient Conditions on Carbon/Silica Composites. Langmuir, 2013, 29, 6895-6902.	1.6	6

#	Article	IF	CITATIONS
181	Charge Storage Accessibility Factor as a Parameter Determining the Capacitive Performance of Nanoporous Carbon-Based Supercapacitors. ACS Sustainable Chemistry and Engineering, 2013, 1, 1024-1032.	3.2	36
182	NO2 adsorption at ambient temperature on urea-modified ordered mesoporous carbon. Carbon, 2013, 63, 283-293.	5.4	40
183	Adsorptive Removal of Thiophenic Compounds from Oils by Activated Carbon Modified with Concentrated Nitric Acid. Energy & Fuels, 2013, 27, 1499-1505.	2.5	67
184	Band gap energies of solar micro/meso-porous composites of zinc (hydr)oxide with graphite oxides. Journal of Applied Physics, 2013, 114, 043522.	1.1	9
185	Effect of confined space reduction of graphite oxide followed by sulfur doping on oxygen reduction reaction in neutral electrolyte. Journal of Materials Chemistry A, 2013, 1, 7059.	5.2	56
186	S-doped micro/mesoporous carbon–graphene composites as efficient supercapacitors in alkaline media. Journal of Materials Chemistry A, 2013, 1, 11717.	5.2	144
187	Time-resolved photoluminescence of Zn(OH)_2 and its composites with graphite oxides. Optics Letters, 2013, 38, 2227.	1.7	5
188	Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal. Journal of Chemical Technology and Biotechnology, 2013, 88, 1058-1066.	1.6	21
189	Structural and optical characterization of Zn(OH)_2and its composites with graphite oxides. Optics Letters, 2013, 38, 962.	1.7	17
190	Utilization of Third-Stage Waste from a Rice Production for Removal of H ₂ S, NO ₂ and SO ₂ from Air. Adsorption Science and Technology, 2013, 31, 199-212.	1.5	1
191	Photoactivity of S-doped nanoporous activated carbons: A new perspective for harvesting solar energy on carbon-based semiconductors. Applied Catalysis A: General, 2012, 445-446, 159-165.	2.2	85
192	Exploring the coordination chemistry of MOF–graphite oxide composites and their applications as adsorbents. Dalton Transactions, 2012, 41, 4027.	1.6	217
193	Changes in Surface Chemistry of Carbon Materials upon Electrochemical Measurements and their Effects on Capacitance in Acidic and Neutral Electrolytes. ChemSusChem, 2012, 5, 2188-2199.	3.6	25
194	Visible-Light-Enhanced Interactions of Hydrogen Sulfide with Composites of Zinc (Oxy)hydroxide with Graphite Oxide and Graphene. Langmuir, 2012, 28, 1337-1346.	1.6	76
195	Zinc (hydr)oxide/graphite based-phase composites: effect of the carbonaceous phase on surface properties and enhancement in electrical conductivity. Journal of Materials Chemistry, 2012, 22, 7970.	6.7	50
196	Microcalorimetric insight into the analysis of the reactive adsorption of ammonia on Cu-MOF and its composite with graphite oxide. Journal of Materials Chemistry, 2012, 22, 21443.	6.7	25
197	Evaluation of GO/MnO2 composites as supercapacitors in neutral electrolytes: role of graphite oxide oxidation level. Journal of Materials Chemistry, 2012, 22, 23525.	6.7	37
198	Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents. Water Research, 2012, 46, 4081-4090.	5.3	101

#	Article	IF	CITATIONS
199	Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility. Journal of Power Sources, 2012, 220, 243-252.	4.0	59
200	ReaxFF molecular dynamics simulation of thermal stability of a Cu3(BTC)2 metal–organic framework. Physical Chemistry Chemical Physics, 2012, 14, 11327.	1.3	48
201	Interactions of NO ₂ with Amine-Functionalized SBA-15: Effects of Synthesis Route. Langmuir, 2012, 28, 5703-5714.	1.6	42
202	Interactions of NO ₂ with Zinc (Hydr)oxide/Graphene Phase Composites: Visible Light Enhanced Surface Reactivity. Journal of Physical Chemistry C, 2012, 116, 2527-2535.	1.5	23
203	Reactions of VX, GD, and HD with Zr(OH) ₄ : Near Instantaneous Decontamination of VX. Journal of Physical Chemistry C, 2012, 116, 11606-11614.	1.5	154
204	Enhanced Reactive Adsorption of Hydrogen Sulfide on the Composites of Graphene/Graphite Oxide with Copper (Hydr)oxychlorides. ACS Applied Materials & amp; Interfaces, 2012, 4, 3316-3324.	4.0	94
205	Effects of the addition of graphite oxide to the precursor of a nanoporous carbon on the electrochemical performance of the resulting carbonaceous composites. Carbon, 2012, 50, 4144-4154.	5.4	24
206	Towards understanding reactive adsorption of small molecule toxic gases on carbonaceous materials. Catalysis Today, 2012, 186, 20-28.	2.2	29
207	Role of phosphorus in carbon matrix in desulfurization of diesel fuel using adsorption process. Fuel, 2012, 92, 318-326.	3.4	54
208	Synthesis of hollow ellipsoidal silica nanostructures using a wet-chemical etching approach. Journal of Colloid and Interface Science, 2012, 375, 106-111.	5.0	36
209	Mesoporous silica SBA-15 modified with copper as an efficient NO2 adsorbent at ambient conditions. Journal of Colloid and Interface Science, 2012, 377, 347-354.	5.0	24
210	Cobalt (hydr)oxide/graphite oxide composites: Importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide. Journal of Colloid and Interface Science, 2012, 378, 1-9.	5.0	45
211	Manganese oxide and graphite oxide/MnO2 composites as reactive adsorbents of ammonia at ambient conditions. Microporous and Mesoporous Materials, 2012, 150, 55-63.	2.2	60
212	Reactive adsorption of acidic gases on MOF/graphite oxide composites. Microporous and Mesoporous Materials, 2012, 154, 107-112.	2.2	190
213	Spent coffee-based activated carbon: Specific surface features and their importance for H2S separation process. Journal of Hazardous Materials, 2012, 201-202, 141-147.	6.5	108
214	Template-free synthesis of silica ellipsoids. Chemical Communications, 2011, 47, 7791.	2.2	21
215	Role of Zr ⁴⁺ Cations in NO ₂ Adsorption on Ce _{1-<i>x</i>} Zr _{<i>x</i>} O ₂ Mixed Oxides at Ambient Conditions. Langmuir, 2011, 27, 9379-9386.	1.6	48
216	Investigation of the Thermal Regeneration Efficiency of Activated Carbons Used in the Desulfurization of Model Diesel Fuel. Industrial & amp; Engineering Chemistry Research, 2011, 50, 14097-14104.	1.8	29

#	Article	IF	CITATIONS
217	Effect of Reduction Treatment on Copper Modified Activated Carbons on NO _{<i>x</i>} Adsorption at Room Temperature. Langmuir, 2011, 27, 5354-5365.	1.6	33
218	Toward Understanding Reactive Adsorption of Ammonia on Cu-MOF/Graphite Oxide Nanocomposites. Langmuir, 2011, 27, 13043-13051.	1.6	137
219	Effect of Carbon Surface Modification with Dimethylamine on Reactive Adsorption of NO _{<i>x</i>} . Langmuir, 2011, 27, 1837-1843.	1.6	50
220	Effect of Graphite Features on the Properties of Metal–Organic Framework/Graphite Hybrid Materials Prepared Using an in Situ Process. Langmuir, 2011, 27, 10234-10242.	1.6	59
221	Copper-Modified Activated Carbons as Adsorbents of NO under Ambient Conditions. Adsorption Science and Technology, 2011, 29, 831-845.	1.5	7
222	Interactions of NO2 at ambient temperature with cerium–zirconium mixed oxides supported on SBA-15. Journal of Hazardous Materials, 2011, 197, 294-303.	6.5	33
223	MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts. Adsorption, 2011, 17, 5-16.	1.4	133
224	Reactive adsorption of penicillin on activated carbons. Adsorption, 2011, 17, 421-429.	1.4	20
225	Importance of carbon surface chemistry in development of iron–carbon composite adsorbents for arsenate removal. Journal of Hazardous Materials, 2011, 186, 667-674.	6.5	48
226	Reactive adsorption of hydrogen sulfide on graphite oxide/Zr(OH)4 composites. Chemical Engineering Journal, 2011, 166, 1032-1038.	6.6	86
227	Synthesis, Characterization, and Ammonia Adsorption Properties of Mesoporous Metal–Organic Framework (MIL(Fe))–Graphite Oxide Composites: Exploring the Limits of Materials Fabrication. Advanced Functional Materials, 2011, 21, 2108-2117.	7.8	294
228	Reactive Adsorption of NO ₂ at Ambient Conditions on Ironâ€Containing Polymerâ€Based Porous Carbons. ChemSusChem, 2011, 4, 404-412.	3.6	13
229	Enhancement in Dibenzothiophene Reactive Adsorption from Liquid Fuel via Incorporation of Sulfur Heteroatoms into the Nanoporous Carbon Matrix. ChemSusChem, 2011, 4, 139-147.	3.6	53
230	The synthesis and characterization of copper-based metal–organic framework/graphite oxide composites. Carbon, 2011, 49, 563-572.	5.4	293
231	Investigation of the enhancing effects of sulfur and/or oxygen functional groups of nanoporous carbons on adsorption of dibenzothiophenes. Carbon, 2011, 49, 1216-1224.	5.4	60
232	Changes in graphite oxide texture and chemistry upon oxidation and reduction and their effect on adsorption of ammonia. Carbon, 2011, 49, 4392-4402.	5.4	70
233	Removal of dibenzothiophenes from model diesel fuel on sulfur rich activated carbons. Applied Catalysis B: Environmental, 2011, , .	10.8	9
234	Effect of silver nanoparticles deposited on micro/mesoporous activated carbons on retention of NOx at room temperature. Journal of Colloid and Interface Science, 2011, 354, 331-340.	5.0	21

#	Article	IF	CITATIONS
235	Hydrogen Sulfide Adsorption on MOFs and MOF/Graphite Oxide Composites. ChemPhysChem, 2010, 11, 3678-3684.	1.0	206
236	Enhanced Adsorption of Ammonia on Metalâ€Organic Framework/Graphite Oxide Composites: Analysis of Surface Interactions. Advanced Functional Materials, 2010, 20, 111-118.	7.8	305
237	Graphite Oxides Obtained from Porous Graphite: The Role of Surface Chemistry and Texture in Ammonia Retention at Ambient Conditions. Advanced Functional Materials, 2010, 20, 1670-1679.	7.8	88
238	Role of microporosity and surface chemistry in adsorption of 4,6-dimethyldibenzothiophene on polymer-derived activated carbons. Fuel, 2010, 89, 1499-1507.	3.4	61
239	Adsorption of dibenzothiophenes on activated carbons with copper and iron deposited on their surfaces. Fuel Processing Technology, 2010, 91, 693-701.	3.7	58
240	Adsorption of ammonia on graphite oxide/Al13 composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353, 30-36.	2.3	13
241	The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon, 2010, 48, 654-667.	5.4	99
242	Specific anion and cation capacitance in porous carbon blacks. Carbon, 2010, 48, 1767-1778.	5.4	45
243	The effect of oxidation on the surface chemistry of sulfur-containing carbons and their arsine adsorption capacity. Carbon, 2010, 48, 1779-1787.	5.4	62
244	Adsorption of Dibenzothiophenes on Nanoporous Carbons: Identification of Specific Adsorption Sites Governing Capacity and Selectivity. Energy & Fuels, 2010, 24, 3352-3360.	2.5	82
245	Interactions of Arsine with Nanoporous Carbons: Role of Heteroatoms in the Oxidation Process at Ambient Conditions. Journal of Physical Chemistry C, 2010, 114, 6527-6533.	1.5	12
246	Reactive Adsorption of Ammonia on Cu-Based MOF/Graphene Composites. Langmuir, 2010, 26, 15302-15309.	1.6	213
247	Effects of Surface Features on Adsorption of SO ₂ on Graphite Oxide/Zr(OH) ₄ Composites. Journal of Physical Chemistry C, 2010, 114, 14552-14560.	1.5	87
248	Effect of the Incorporation of Nitrogen to a Carbon Matrix on the Selectivity and Capacity for Adsorption of Dibenzothiophenes from Model Diesel Fuel. Langmuir, 2010, 26, 227-233.	1.6	38
249	Combined Role of Water and Surface Chemistry in Reactive Adsorption of Ammonia on Graphite Oxides. Langmuir, 2010, 26, 5491-5498.	1.6	44
250	Reactive Adsorption of NO ₂ on Copper-Based Metalâ^'Organic Framework and Graphite Oxide/Metalâ^'Organic Framework Composites. ACS Applied Materials & Interfaces, 2010, 2, 3606-3613.	4.0	152
251	Interactions of NO ₂ and NO with Carbonaceous Adsorbents Containing Silver Nanoparticles. Langmuir, 2010, 26, 9457-9464.	1.6	29
252	Interactions of 4,6-Dimethyldibenzothiophene with the Surface of Activated Carbons. Langmuir, 2009, 25, 9302-9312.	1.6	74

#	Article	IF	CITATIONS
253	Adsorption of hydrogen sulfide on graphite derived materials modified by incorporation of nitrogen. Materials Chemistry and Physics, 2009, 113, 946-952.	2.0	36
254	Graphite oxide/AlZr polycation composites: Surface characterization and performance as adsorbents of ammonia. Materials Chemistry and Physics, 2009, 117, 99-106.	2.0	27
255	Combined Effect of Nitrogen―and Oxygenâ€Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. Advanced Functional Materials, 2009, 19, 438-447.	7.8	1,475
256	MOF–Graphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal–Organic Frameworks. Advanced Materials, 2009, 21, 4753-4757.	11.1	563
257	Role of surface heterogeneity in the removal of ammonia from air on micro/mesoporous activated carbons modified with molybdenum and tungtsen oxides. Microporous and Mesoporous Materials, 2009, 118, 61-67.	2.2	25
258	Interactions of NO2 with activated carbons modified with cerium, lanthanum and sodium chlorides. Journal of Hazardous Materials, 2009, 165, 704-713.	6.5	51
259	Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. Journal of Hazardous Materials, 2009, 167, 357-365.	6.5	214
260	Nitrogen modified carbide-derived carbons as adsorbents of hydrogen sulfide. Journal of Colloid and Interface Science, 2009, 330, 60-66.	5.0	27
261	The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon. Journal of Colloid and Interface Science, 2009, 333, 97-103.	5.0	97
262	On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. Journal of Colloid and Interface Science, 2009, 338, 329-345.	5.0	120
263	Desulfurization of air at high and low H2S concentrations. Chemical Engineering Journal, 2009, 155, 594-602.	6.6	68
264	Role of graphite precursor in the performance of graphite oxides as ammonia adsorbents. Carbon, 2009, 47, 445-456.	5.4	111
265	Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance. Carbon, 2009, 47, 1576-1584.	5.4	126
266	Effects of surface chemistry on the reactive adsorption of hydrogen cyanide on activated carbons. Carbon, 2009, 47, 2456-2465.	5.4	20
267	Textural and chemical factors affecting adsorption capacity of activated carbon in highly efficient desulfurization of diesel fuel. Carbon, 2009, 47, 2491-2500.	5.4	160
268	Selective Adsorption of Dibenzothiophenes on Activated Carbons with Ag, Co, and Ni Species Deposited on Their Surfaces. Energy & Fuels, 2009, 23, 3737-3744.	2.5	38
269	Adsorption/Reduction of NO ₂ on Graphite Oxide/Iron Composites. Industrial & Engineering Chemistry Research, 2009, 48, 10884-10891.	1.8	47
270	MOF–graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia. Journal of Materials Chemistry, 2009, 19, 6521.	6.7	150

#	Article	IF	CITATIONS
271	Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. Journal of Materials Chemistry, 2009, 19, 9176.	6.7	235
272	Graphite Oxide/Polyoxometalate Nanocomposites as Adsorbents of Ammonia. Journal of Physical Chemistry C, 2009, 113, 3800-3809.	1.5	110
273	Removal of hydrogen sulphide on sewage sludge/industrial sludge based carbonaceous adsorbents. International Journal of Environment and Waste Management, 2009, 3, 308.	0.2	1
274	Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled carbon nanotubes. Journal of Colloid and Interface Science, 2008, 317, 375-382.	5.0	80
275	Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium–aluminium polyoxycation composites. Journal of Colloid and Interface Science, 2008, 324, 25-35.	5.0	43
276	Complexity of ammonia interactions on activated carbons modified with V2O5. Journal of Colloid and Interface Science, 2008, 325, 301-308.	5.0	12
277	Activated carbons modified with aluminium–zirconium polycations as adsorbents for ammonia. Microporous and Mesoporous Materials, 2008, 114, 137-147.	2.2	40
278	Interactions of NO2 with sewage sludge based composite adsorbents. Journal of Hazardous Materials, 2008, 154, 946-953.	6.5	35
279	Surface features of exfoliated graphite/bentonite composites and their importance for ammonia adsorption. Carbon, 2008, 46, 1241-1252.	5.4	44
280	Development of surface porosity and catalytic activity in metal sludge/waste oil derived adsorbents: Effect of heat treatment. Chemical Engineering Journal, 2008, 138, 155-165.	6.6	16
281	Effect of fly ash addition on the removal of hydrogen sulfide from biogas and air on sewage sludge-based composite adsorbents. Waste Management, 2008, 28, 1983-1992.	3.7	43
282	Role of oil derived carbonaceous phase in the performance of sewage sludge-based materials as media for desulfurizaton of digester gas. Applied Surface Science, 2008, 254, 2385-2395.	3.1	13
283	Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 2008, 46, 1475-1488.	5.4	774
284	Desulfurization of Digester Gas on Wood-Based Activated Carbons Modified with Nitrogen: Importance of Surface Chemistry. Energy & Fuels, 2008, 22, 850-859.	2.5	36
285	Role of Microporosity and Nitrogen Functionality on the Surface of Activated Carbon in the Process of Desulfurization of Digester Gas. Journal of Physical Chemistry C, 2008, 112, 4704-4711.	1.5	48
286	Removal of Ammonia from Air on Molybdenum and Tungsten Oxide Modified Activated Carbons. Environmental Science & Technology, 2008, 42, 3033-3039.	4.6	38
287	Sewage Sludge/Metal Sludge/Waste Oil Composites as Catalysts for Desulfurization of Digester Gas. Energy & Fuels, 2008, 22, 389-397.	2.5	12
288	Investigation of the Role of Surface Chemistry and Accessibility of Cadmium Adsorption Sites on Open-Surface Carbonaceous Materials. Langmuir, 2008, 24, 11701-11710.	1.6	30

#	Article	IF	CITATIONS
289	Removal of Inorganic Gases and VOCS on Activated Carbons. , 2008, , 533-564.		8
290	Removal of Cationic and Ionic Dyes on Industrialâ^'Municipal Sludge Based Composite Adsorbents. Industrial & Engineering Chemistry Research, 2007, 46, 1786-1793.	1.8	54
291	Silicaâ^'Polyamine-Based Carbon Composite Adsorbents as Media for Effective Hydrogen Sulfide Adsorption/Oxidation. Chemistry of Materials, 2007, 19, 2500-2511.	3.2	23
292	Interactions of Ammonia with the Surface of Microporous Carbon Impregnated with Transition Metal Chlorides. Journal of Physical Chemistry C, 2007, 111, 12705-12714.	1.5	96
293	Tobacco Waste/Industrial Sludge Based Desulfurization Adsorbents:Â Effect of Phase Interactions during Pyrolysis on Surface Activity. Environmental Science & Technology, 2007, 41, 3715-3721.	4.6	21
294	Template-Derived Mesoporous Carbons with Highly Dispersed Transition Metals as Media for the Reactive Adsorption of Dibenzothiophene. Langmuir, 2007, 23, 6033-6041.	1.6	64
295	Desulfurization of Digester Gas on Industrial-Sludge-Derived Adsorbents. Energy & Fuels, 2007, 21, 858-866.	2.5	14
296	Reactive Adsorption of NO ₂ at Dry Conditions on Sewage Sludge-Derived Materials. Environmental Science & Technology, 2007, 41, 7516-7522.	4.6	30
297	Role of Aluminum Oxycations in Retention of Ammonia on Modified Activated Carbons. Journal of Physical Chemistry C, 2007, 111, 16445-16452.	1.5	37
298	Role of Graphite Oxide (GO) and Polyaniline (PANI) in NO ₂ Reduction on GO-PANI Composites. Industrial & Engineering Chemistry Research, 2007, 46, 6925-6935.	1.8	53
299	The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons. Carbon, 2007, 45, 568-578.	5.4	156
300	Removal of ammonia by graphite oxide via its intercalation and reactive adsorption. Carbon, 2007, 45, 2130-2132.	5.4	82
301	Activated carbons modified with sewage sludge derived phase and their application in the process of NO2 removal. Carbon, 2007, 45, 2537-2546.	5.4	65
302	Sewage sludge as a single precursor for development of composite adsorbents/catalysts. Chemical Engineering Journal, 2007, 128, 59-67.	6.6	46
303	Removal of hydrogen sulfide from biogas on sludge-derived adsorbents. Fuel, 2007, 86, 2736-2746.	3.4	80
304	Surface properties of porous carbons obtained from polystyrene-based polymers within inorganic templates: role of polymer chemistry and inorganic template pore structure. Microporous and Mesoporous Materials, 2007, 100, 45-54.	2.2	14
305	Mechanism of Ammonia Retention on Graphite Oxides: $\hat{a}\in \mathbb{W}$ Role of Surface Chemistry and Structure. Journal of Physical Chemistry C, 2007, 111, 15596-15604.	1.5	162
306	Adsorption of Ethylmethylamine Vapor by Activated Carbon Filters. Industrial & Engineering Chemistry Research, 2006, 45, 1441-1445.	1.8	18

#	Article	IF	CITATIONS
307	Removal of Hydrogen Sulfide on Composite Sewage Sludge-Industrial Sludge-Based Adsorbents. Industrial & Engineering Chemistry Research, 2006, 45, 3666-3672.	1.8	39
308	Desulfurization of Digester Gas on Catalytic Carbonaceous Adsorbents:Â Complexity of Interactions between the Surface and Components of the Gaseous Mixture. Industrial & Engineering Chemistry Research, 2006, 45, 3658-3665.	1.8	38
309	Sodium on the Surface of Activated Carbons as a Factor Enhancing Reactive Adsorption of Dibenzothiophene. Energy & Fuels, 2006, 20, 1076-1080.	2.5	19
310	Municipal Sludgeâ ``Industrial Sludge Composite Desulfurization Adsorbents:Â Synergy Enhancing the Catalytic Properties. Environmental Science & Technology, 2006, 40, 3378-3383.	4.6	48
311	Metal-loaded polystyrene-based activated carbons as dibenzothiophene removal media via reactive adsorption. Carbon, 2006, 44, 2404-2412.	5.4	122
312	Highly mesoporous carbons obtained using a dynamic template method. Microporous and Mesoporous Materials, 2006, 89, 315-324.	2.2	15
313	Metal-loaded carbonaceous adsorbents templated from porous clay heterostructures. Microporous and Mesoporous Materials, 2006, 92, 47-55.	2.2	26
314	Photooxidation of dibenzothiophene on TiO2/hectorite thin films layered catalyst. Journal of Colloid and Interface Science, 2006, 299, 125-135.	5.0	65
315	Removal of copper on composite sewage sludge/industrial sludge-based adsorbents: The role of surface chemistry. Journal of Colloid and Interface Science, 2006, 302, 379-388.	5.0	53
316	Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents. Applied Catalysis B: Environmental, 2006, 67, 77-85.	10.8	77
317	CARBONACEOUS MATERIALS AS DESULFURIZATION MEDIA. , 2006, , 145-164.		7
318	Oxidative adsorption of methyl mercaptan on nitrogen-enriched bituminous coal-based activated carbon. Carbon, 2005, 43, 208-210.	5.4	41
319	Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide. Carbon, 2005, 43, 359-367.	5.4	106
320	Effect of adsorbent composition on H2S removal on sewage sludge-based materials enriched with carbonaceous phase. Carbon, 2005, 43, 1039-1048.	5.4	41
321	Catalytic properties of activated carbon surface in the process of adsorption/oxidation of methyl mercaptan. Catalysis Today, 2005, 99, 323-328.	2.2	73
322	Desulfurization of digester gas: prediction of activated carbon bed performance at low concentrations of hydrogen sulfide. Catalysis Today, 2005, 99, 329-337.	2.2	65
323	A study of ignition of metal impregnated carbons: the influence of oxygen content in the activated carbon matrix. Journal of Colloid and Interface Science, 2005, 282, 102-108.	5.0	14
324	Predictions of H2S Breakthrough Capacity of Activated Carbons at Low Concentrations of Hydrogen Sulfide. Adsorption, 2005, 11, 461-466.	1.4	3

#	Article	IF	CITATIONS
325	Enhancement of the Performance of Activated Carbons as Municipal Odor Removal Media by Addition of a Sewage-Sludge-Derived Phase. Environmental Science & Technology, 2005, 39, 6225-6230.	4.6	29
326	On the Mechanism of Hydrogen Sulfide Removal from Moist Air on Catalytic Carbonaceous Adsorbents. Industrial & Engineering Chemistry Research, 2005, 44, 530-538.	1.8	124
327	Inorganicâ~'Organic Phase Arrangement as a Factor Affecting Gas-Phase Desulfurization on Catalytic Carbonaceous Adsorbents. Environmental Science & Technology, 2005, 39, 6217-6224.	4.6	26
328	Adsorption of hydrogen sulfide on montmorillonites modified with iron. Chemosphere, 2005, 59, 343-353.	4.2	98
329	Role of Surface Oxygen Groups in Incorporation of Nitrogen to Activated Carbons via Ethylmethylamine Adsorption. Langmuir, 2005, 21, 1282-1289.	1.6	46
330	Importance of Structural and Chemical Heterogeneity of Activated Carbon Surfaces for Adsorption of Dibenzothiophene. Langmuir, 2005, 21, 7752-7759.	1.6	206
331	Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites. Journal of Colloid and Interface Science, 2004, 273, 64-72.	5.0	104
332	Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon, 2004, 42, 469-476.	5.4	252
333	Efficient Hydrogen Sulfide Adsorbents Obtained by Pyrolysis of Sewage Sludge Derived Fertilizer Modified with Spent Mineral Oil. Environmental Science & Technology, 2004, 38, 345-351.	4.6	81
334	Surface Properties of Porous Carbon Obtained from Polystyrene Sulfonic Acid-Based Organic Salts. Langmuir, 2004, 20, 3388-3397.	1.6	97
335	Role of surface chemistry in adsorption of phenol on activated carbons. Journal of Colloid and Interface Science, 2003, 264, 307-312.	5.0	202
336	Adsorption/Oxidation of CH3SH on Activated Carbons Containing Nitrogen. Langmuir, 2003, 19, 6115-6121.	1.6	70
337	Heterogeneity of adsorption energy of water, methanol and diethyl ether on activated carbons: effect of porosity and surface chemistry. Physical Chemistry Chemical Physics, 2003, 5, 2096.	1.3	19
338	Effect of increased basicity of activated carbon surface on valeric acid adsorption from aqueous solution activated carbon. Physical Chemistry Chemical Physics, 2003, 5, 4892.	1.3	17
339	Effect of Transition-Metal Cations on the Adsorption of H2S in Modified Pillared Clays. Journal of Physical Chemistry B, 2003, 107, 5812-5817.	1.2	44
340	A Role of Sodium Hydroxide in the Process of Hydrogen Sulfide Adsorption/Oxidation on Caustic-Impregnated Activated Carbons. Industrial & Engineering Chemistry Research, 2002, 41, 672-679.	1.8	123
341	Effect of Surface Characteristics on Adsorption of Methyl Mercaptan on Activated Carbons. Industrial & Engineering Chemistry Research, 2002, 41, 4346-4352.	1.8	71
342	Adsorption of SO2on Activated Carbons: The Effect of Nitrogen Functionality and Pore Sizes. Langmuir, 2002, 18, 1257-1264.	1.6	128

#	Article	IF	CITATIONS
343	Dual Role of Water in the Process of Methyl Mercaptan Adsorption on Activated Carbons. Langmuir, 2002, 18, 8553-8559.	1.6	40
344	Acetaldehyde Adsorption on Nitrogen-Containing Activated Carbons. Langmuir, 2002, 18, 3213-3218.	1.6	60
345	Interactions of water, methanol and diethyl ether molecules with the surface of oxidized activated carbon. Molecular Physics, 2002, 100, 2041-2048.	0.8	17
346	Study of regeneration of activated carbons used as H2S adsorbents in water treatment plants. Journal of Environmental Management, 2002, 6, 303-311.	1.7	27
347	Adsorption of Methyl Mercaptan on Activated Carbons. Environmental Science & Technology, 2002, 36, 2777-2782.	4.6	107
348	On the Adsorption/Oxidation of Hydrogen Sulfide on Activated Carbons at Ambient Temperatures. Journal of Colloid and Interface Science, 2002, 246, 1-20.	5.0	316
349	H2S Adsorption/Oxidation on Materials Obtained Using Sulfuric Acid Activation of Sewage Sludge-Derived Fertilizer. Journal of Colloid and Interface Science, 2002, 252, 188-194.	5.0	58
350	Influence of Organics on the Structure of Water Adsorbed on Activated Carbons. Journal of Colloid and Interface Science, 2002, 253, 23-34.	5.0	46
351	Adsorption of SO2on Sewage Sludge-Derived Materials. Environmental Science & Technology, 2001, 35, 3263-3269.	4.6	67
352	Study of Diethyl Ether Adsorption on Activated Carbons Using IGC at Finite Concentration. Langmuir, 2001, 17, 4967-4972.	1.6	17
353	H2S Adsorption/Oxidation on Adsorbents Obtained from Pyrolysis of Sewage-Sludge-Derived Fertilizer Using Zinc Chloride Activation. Industrial & Engineering Chemistry Research, 2001, 40, 3502-3510.	1.8	53
354	Sewage Sludge-Derived Materials as Efficient Adsorbents for Removal of Hydrogen Sulfide. Environmental Science & Technology, 2001, 35, 1537-1543.	4.6	171
355	Water in porous carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 539-568.	2.3	347
356	Surface Chemistry of Activated Carbons: Combining the Results of Temperature-Programmed Desorption, Boehm, and Potentiometric Titrations. Journal of Colloid and Interface Science, 2001, 240, 252-258.	5.0	263
357	A Study of Acetaldehyde Adsorption on Activated Carbons. Journal of Colloid and Interface Science, 2001, 242, 44-51.	5.0	54
358	Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent. Carbon, 2001, 39, 1319-1326.	5.4	110
359	pH of activated carbon surface as an indication of its suitability for H2S removal from moist air streams. Carbon, 2001, 39, 1897-1905.	5.4	129
360	Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 2001, 39, 1971-1979.	5.4	261

#	Article	IF	CITATIONS
361	H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification. Carbon, 2001, 39, 2303-2311.	5.4	116
362	Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 2000, 38, 669-674.	5.4	193
363	Unmodified versus Caustics- Impregnated Carbons for Control of Hydrogen Sulfide Emissions from Sewage Treatment Plants. Environmental Science & Technology, 2000, 34, 1069-1074.	4.6	101
364	On the Possibility of Water Regeneration of Unimpregnated Activated Carbons Used as Hydrogen Sulfide Adsorbents. Industrial & Engineering Chemistry Research, 2000, 39, 2439-2446.	1.8	35
365	Adsorption/Oxidation of Hydrogen Sulfide on Nitrogen-Containing Activated Carbons. Langmuir, 2000, 16, 1980-1986.	1.6	196
366	Wood-Based Activated Carbons as Adsorbents of Hydrogen Sulfide: A Study of Adsorption and Water Regeneration Processes. Industrial & Engineering Chemistry Research, 2000, 39, 3849-3855.	1.8	37
367	Study of Hydrogen Sulfide Adsorption on Activated Carbons Using Inverse Gas Chromatography at Infinite Dilution. Journal of Physical Chemistry B, 2000, 104, 8841-8847.	1.2	38
368	Comparison of the Surface Features of Two Wood-Based Activated Carbons. Industrial & Engineering Chemistry Research, 2000, 39, 301-306.	1.8	73
369	Study of H2S Adsorption and Water Regeneration of Spent Coconut-Based Activated Carbon. Environmental Science & Technology, 2000, 34, 4587-4592.	4.6	72
370	Analysis of the Relationship between H2S Removal Capacity and Surface Properties of Unimpregnated Activated Carbons. Environmental Science & Technology, 2000, 34, 686-692.	4.6	201
371	Adsorption of Water and Methanol on Micro- and Mesoporous Wood-Based Activated Carbons. Langmuir, 2000, 16, 5435-5440.	1.6	64
372	EFFECT OF SURFACE CHEMISTRY ON THE PERFORMANCE OF UNIMPREGNATED ACTIVATED CARBONS AS H2S ADSORBENTS. , 2000, , .		2
373	EFFECT OF SURFACE CHEMISTRY AND PORE STRUCTURE ON ADSORPTION OF WATER AND CH ₃ OH ON ACTIVATED CARBONS. , 2000, , .		1
374	Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide. Carbon, 1999, 37, 483-491.	5.4	190
375	Experimental Study of Water Adsorption on Activated Carbons. Langmuir, 1999, 15, 587-593.	1.6	136
376	Revisiting the Effect of Surface Chemistry on Adsorption of Water on Activated Carbons. Journal of Physical Chemistry B, 1999, 103, 3877-3884.	1.2	58
377	Study of Water Adsorption on Activated Carbons with Different Degrees of Surface Oxidation. Journal of Colloid and Interface Science, 1999, 210, 367-374.	5.0	132
378	Effect of Surface Characteristics of Wood-Based Activated Carbons on Adsorption of Hydrogen Sulfide. Journal of Colloid and Interface Science, 1999, 214, 407-415.	5.0	137

#	Article	IF	CITATIONS
379	Effect of pH and Surface Chemistry on the Mechanism of H2S Removal by Activated Carbons. Journal of Colloid and Interface Science, 1999, 216, 360-369.	5.0	144
380	Initial Heats of H2S Adsorption on Activated Carbons: Effect of Surface Features. Journal of Colloid and Interface Science, 1999, 219, 327-332.	5.0	25
381	A Molecular Model for Adsorption of Water on Activated Carbon:Â Comparison of Simulation and Experiment. Langmuir, 1999, 15, 533-544.	1.6	287
382	Porosity and Surface Acidity of SiO2–Al2O3Xerogels. Journal of Colloid and Interface Science, 1998, 198, 347-353.	5.0	26
383	Molecular Modeling of Selective Adsorption from Mixtures. Materials Research Society Symposia Proceedings, 1997, 497, 231.	0.1	4
384	Heterogeneity of Pillared Clays Determined by Adsorption of SF6 at Temperatures Near Ambient. Langmuir, 1997, 13, 1010-1015.	1.6	17
385	Determination of the Pore Size Distribution and Network Connectivity in Microporous Solids by Adsorption Measurements and Monte Carlo Simulation. Langmuir, 1997, 13, 4435-4445.	1.6	97
386	Effect of Mineral Host on Surface Acidity of Hydroxy-Cr Intercalated Clays. Clays and Clay Minerals, 1997, 45, 110-113.	0.6	3
387	Changes in Acidity of Fe-Pillared/Delaminated Smectites on Heat Treatment. Journal of Colloid and Interface Science, 1997, 191, 456-463.	5.0	13
388	Analysis of Silica Surface Heterogeneity Using Butane and Butene Adsorption Data. Journal of Colloid and Interface Science, 1997, 193, 127-131.	5.0	16
389	Surface chemical heterogeneity of pillared hydrotalcites. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1243.	1.7	12
390	Effect of Surface Chemistry on Sorption of Water and Methanol on Activated Carbons. Langmuir, 1996, 12, 6480-6486.	1.6	115
391	Characterization of Microporous Carbons Using Adsorption at Near Ambient Temperatures. Langmuir, 1996, 12, 2837-2842.	1.6	43
392	Adsorption of Sulfur Hexafluoride and Propane at Temperatures near Ambient on Pillared Clays. Journal of Chemical & Engineering Data, 1996, 41, 880-884.	1.0	31
393	Pore Structure of Carbonâ^'Mineral Nanocomposites and Derived Carbons Obtained by Template Carbonization. Chemistry of Materials, 1996, 8, 2023-2029.	3.2	75
394	Changes in the acidic properties of pillared taeniolites on heat treatment or alkene decomposition. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4631-4635.	1.7	2
395	Study of Nanocomposites Obtained by Carbonization of Different Organic Precursors within Taeniolite Matrices. Clays and Clay Minerals, 1996, 44, 237-243.	0.6	11
396	A Study of Acidity and Structure of Hydroxy-Cr Intercalated Bentonites. Journal of Colloid and Interface Science, 1996, 182, 570-577.	5.0	4

#	Article	IF	CITATIONS
397	Characterization of the Structure and Surface Acidity of Hydroxychromium Taeniolites. The Journal of Physical Chemistry, 1996, 100, 15569-15574.	2.9	5
398	Thermodynamically Consistent Analysis of Silica Surface Heterogeneity Using Alkane and Alkene Adsorption Isotherms. Kluwer International Series in Engineering and Computer Science, 1996, , 417-424.	0.2	2
399	Determination of Proton Affinity Distributions for Chemical Systems in Aqueous Environments Using a Stable Numerical Solution of the Adsorption Integral Equation. Journal of Colloid and Interface Science, 1995, 172, 341-346.	5.0	89
400	Ropore structure development in poly(sodium-4-styrenesulfonate) derived carbons. Carbon, 1995, 33, 1047-1052.	5.4	10
401	Sieving Properties of Carbons Obtained by Template Carbonization of Polyfurfuryl Alcohol within Mineral Matrixes. Langmuir, 1995, 11, 3964-3969.	1.6	45
402	Adsorption near Ambient Temperatures of Methane, Carbon Tetrafluoride, and Sulfur Hexafluoride on Commercial Activated Carbons. Journal of Chemical & Engineering Data, 1995, 40, 1288-1292.	1.0	55
403	Hydrotalcite-like structures as molecular containers for preparation of microporous carbons. Applied Clay Science, 1995, 10, 177-186.	2.6	21
404	Surface acidity of pillared taeniolites in terms of their proton affinity distributions. The Journal of Physical Chemistry, 1995, 99, 13522-13527.	2.9	32
405	Structural and adsorption properties of carbons synthesized within taeniolite matrices. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 493-497.	1.7	10
406	Micropore structure of template-derived carbons studied using adsorption of gases with different molecular diameters. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2929-2933.	1.7	36
407	Sorption Properties of Carbon Composite Materials Formed from Layered Clay Minerals. Clays and Clay Minerals, 1994, 42, 1-6.	0.6	28
408	Pore structures of carbon-smectite nanocomposites. Microporous Materials, 1994, 3, 177-184.	1.6	17
409	Study of carbon microstructure by using inverse gas chromatography. Carbon, 1994, 32, 687-691.	5.4	27
410	Carbon surface characterization in terms of its acidity constant distribution. Carbon, 1994, 32, 1026-1028.	5.4	194
411	Study of carbon-smectite composites and carbons obtained by in situ carbonization of polyfurfuryl alcohol. Carbon, 1994, 32, 659-664.	5.4	54
412	Characterization of acidity of pillared clays by proton affinity distribution and DRIFT spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3573-3578.	1.7	26
413	Adsorption energy and structural heterogeneity of activated carbons. Studies in Surface Science and Catalysis, 1994, 87, 679-688.	1.5	6
414	Characterization of the surfaces of activated carbons in terms of their acidity constant distributions. Carbon, 1993, 31, 1193-1202.	5.4	187

#	Article	IF	CITATIONS
415	Application of inverse gas chromatography to the study of the surface properties of modified layered minerals. Microporous Materials, 1993, 1, 73-79.	1.6	47
416	Effect of surface chemical groups on energetic heterogeneity of activated carbons. Langmuir, 1993, 9, 2518-2522.	1.6	56
417	Comparison of methods to assess surface acidic groups on activated carbons. Analytical Chemistry, 1992, 64, 891-895.	3.2	105
418	Inverse Gas Chromatography Study of Modified Smectite Surfaces. Clays and Clay Minerals, 1992, 40, 306-310.	0.6	51
419	Chemical and structural properties of clay minerals modified by inorganic and organic material. Clay Minerals, 1992, 27, 435-444.	0.2	27
420	Inverse gas chromatographic study of activated carbons: The effect of controlled oxidation on microstructure and surface chemical functionality. Journal of Colloid and Interface Science, 1992, 151, 433-445.	5.0	52
421	A study of the activity of chemical groups on carbonaceous and model surfaces by infinite dilution chromatography. Chromatographia, 1992, 33, 441-444.	0.7	8
422	Thermodynamic study of high-pressure adsorption of methane on activated carbons: The effect of oxidation on pore structure and adsorption energy heterogeneity. Carbon, 1992, 30, 507-512.	5.4	18
423	Application of inverse gas chromatography at infinite dilution to study the effects of oxidation of activated carbons. Carbon, 1992, 30, 63-69.	5.4	49