Jay C D Hinton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8460133/publications.pdf

Version: 2024-02-01

19657 24982 13,275 144 61 109 citations h-index g-index papers 169 169 169 10090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unravelling the biology of macrophage infection by gene expression profiling of intracellular <i>Salmonella enterica (i). Molecular Microbiology, 2003, 47, 103-118.</i>	2.5	804
2	Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq. PLoS Genetics, 2008, 4, e1000163.	3.5	515
3	H-NS Mediates the Silencing of Laterally Acquired Genes in Bacteria. PLoS Pathogens, 2006, 2, e81.	4.7	471
4	Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation. Journal of Bacteriology, 2012, 194, 686-701.	2.2	462
5	An Infection-Relevant Transcriptomic Compendium for Salmonella enterica Serovar Typhimurium. Cell Host and Microbe, 2013, 14, 683-695.	11.0	427
6	The transcriptional landscape and small RNAs of <i>Salmonella enterica</i> serovar Typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1277-86.	7.1	373
7	Ïf ^E â€dependent small RNAs of <i>Salmonella</i> respond to membrane stress by accelerating global <i>omp</i> mRNA decay. Molecular Microbiology, 2006, 62, 1674-1688.	2.5	330
8	Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria. Cell, 1990, 63, 631-642.	28.9	321
9	The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell, 1992, 71, 255-265.	28.9	309
10	Butyrate Specifically Down-Regulates Salmonella Pathogenicity Island 1 Gene Expression. Applied and Environmental Microbiology, 2006, 72, 946-949.	3.1	295
11	Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nature Structural and Molecular Biology, 2009, 16, 840-846.	8.2	271
12	During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cellular Microbiology, 2008, 10, 958-984.	2.1	232
13	RNA-seq Brings New Insights to the Intra-Macrophage Transcriptome of Salmonella Typhimurium. PLoS Pathogens, 2015, 11, e1005262.	4.7	222
14	Single-Copy Green Fluorescent Protein Gene FusionsAllow Accurate Measurement of Salmonella Gene Expression InVitro and during Infection of MammalianCells. Applied and Environmental Microbiology, 2003, 69, 7480-7491.	3.1	221
15	From The Cover: Bacterial genome size reduction by experimental evolution. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12112-12116.	7.1	212
16	SseL, a <i>Salmonella</i> deubiquitinase required for macrophage killing and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3502-3507.	7.1	208
17	Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfqâ€dependent small RNA. Molecular Microbiology, 2009, 74, 139-158.	2.5	202
18	Protein H1: a role for chromatin structure in the regulation of bacterial gene expression and virulence?. Molecular Microbiology, 1990, 4, 2007-2012.	2.5	196

#	Article	IF	CITATIONS
19	The chromatin-associated protein H-NS alters DNA topology in vitro EMBO Journal, 1994, 13, 258-268.	7.8	193
20	Pervasive postâ€transcriptional control of genes involved in amino acid metabolism by the Hfqâ€dependent GcvB small RNA. Molecular Microbiology, 2011, 81, 1144-1165.	2.5	191
21	Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicFRNA. Molecular Microbiology, 2012, 84, 428-445.	2.5	185
22	A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology (United Kingdom), 2004, 150, 2037-2053.	1.8	175
23	Transcriptional Adaptation of Shigella flexneri during Infection of Macrophages and Epithelial Cells: Insights into the Strategies of a Cytosolic Bacterial Pathogen. Infection and Immunity, 2005, 73, 88-102.	2.2	167
24	Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8784-8789.	7.1	162
25	The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Molecular Microbiology, 2006, 59, 1831-1847.	2.5	159
26	Systematic deletion of <i>Salmonella</i> small RNA genes identifies CyaR, a conserved CRPâ€dependent riboregulator of OmpX synthesis. Molecular Microbiology, 2008, 68, 890-906.	2.5	154
27	Glucose and Glycolysis Are Required for the Successful Infection of Macrophages and Mice by <i>Salmonella enterica</i> Serovar Typhimurium. Infection and Immunity, 2009, 77, 3117-3126.	2.2	142
28	Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends in Microbiology, 1999, 7, 124-128.	7.7	137
29	H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochemical Journal, 2005, 391, 203-213.	3.7	137
30	The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium. PLoS Genetics, 2016, 12, e1006258.	3 . 5	129
31	Expression and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurium. Molecular Microbiology, 1992, 6, 2327-2337.	2.5	125
32	H-NS Oligomerization Domain Structure Reveals the Mechanism for High Order Self-association of the Intact Protein. Journal of Molecular Biology, 2002, 324, 841-850.	4.2	123
33	The chromatin-associated protein H-NS. Biochimie, 1994, 76, 968-980.	2.6	122
34	Microarrays for microbiologists. Microbiology (United Kingdom), 2001, 147, 1403-1414.	1.8	116
35	Oligomerization of the chromatin-structuring protein H-NS. Molecular Microbiology, 2000, 36, 962-972.	2,5	112
36	DNA Adenine Methylation Regulates Virulence Gene Expression in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2006, 188, 8160-8168.	2.2	110

#	Article	IF	CITATIONS
37	Role of the nucleoid-associated protein Fis in the regulation of virulence properties of enteropathogenic Escherichia coli. Molecular Microbiology, 2001, 41, 549-559.	2.5	108
38	Extracellular and periplasmic isoenzymes of pectate lyase from Erwinia carotovora subspecies carotovora belong to different gene families. Molecular Microbiology, 1989, 3, 1785-1795.	2.5	107
39	The Global Consequence of Disruption of the AcrAB-TolC Efflux Pump in <i>Salmonella enterica</i> Includes Reduced Expression of SPI-1 and Other Attributes Required To Infect the Host. Journal of Bacteriology, 2009, 191, 4276-4285.	2.2	107
40	Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses. BMC Genomics, 2008, 9, 458.	2.8	105
41	Unphosphorylated CsgD controls biofilm formation in <i>Salmonella enterica</i> serovar Typhimurium. Molecular Microbiology, 2010, 77, 771-786.	2.5	102
42	A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology (United Kingdom), 2008, 154, 1218-1228.	1.8	101
43	The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics, 2009, 10, 599.	2.8	101
44	A Model System for Studying the Transcriptomic and Physiological Changes Associated with Mammalian Host-Adaptation by Leptospira interrogans Serovar Copenhageni. PLoS Pathogens, 2014, 10, e1004004.	4.7	101
45	A simple and rapid method of direct sequencing using Dynabeads. British Journal of Haematology, 1991, 79, 113-115.	2.5	92
46	Transcriptomic Analysis of <i>Escherichia coli</i> O157:H7 and K-12 Cultures Exposed to Inorganic and Organic Acids in Stationary Phase Reveals Acidulant- and Strain-Specific Acid Tolerance Responses. Applied and Environmental Microbiology, 2010, 76, 6514-6528.	3.1	92
47	Down-Regulation of Key Virulence Factors Makes the Salmonella enterica Serovar Typhimurium rfaH Mutant a Promising Live-Attenuated Vaccine Candidate. Infection and Immunity, 2006, 74, 5914-5925.	2.2	88
48	A pleiotropic reduced virulence (Rvi?) mutant of Erwinia carotovora subspecies atroseptica is defective in flagella assembly proteins that are conserved in plant and animal bacterial pathogens. Molecular Microbiology, 1993, 9, 343-356.	2.5	84
49	Genomeâ€wide analysis of the Hâ€NS and Sfh regulatory networks in <i>Salmonella</i> Typhimurium identifies a plasmidâ€encoded transcription silencing mechanism. Molecular Microbiology, 2010, 76, 1250-1265.	2.5	84
50	The ancestral SgrS RNA discriminates horizontally acquired <i>Salmonella</i> mRNAs through a single G-U wobble pair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E757-64.	7.1	84
51	Identification of a New Member of the Phage Shock Protein Response in Escherichia coli, the Phage Shock Protein G (PspG). Journal of Biological Chemistry, 2004, 279, 55707-55714.	3.4	82
52	ProP Is Required for the Survival of Desiccated Salmonella enterica Serovar Typhimurium Cells on a Stainless Steel Surface. Applied and Environmental Microbiology, 2013, 79, 4376-4384.	3.1	80
53	Benefits and pitfalls of using microarrays to monitor bacterial gene expression during infection. Current Opinion in Microbiology, 2004, 7, 277-282.	5.1	78
54	Role of a single noncoding nucleotide in the evolution of an epidemic African clade of <i>Salmonella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2614-E2623.	7.1	75

#	Article	IF	Citations
55	MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands. Nucleic Acids Research, 2007, 35, W97-W104.	14.5	74
56	Characterization of the Prophage Repertoire of African Salmonella Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1. Frontiers in Microbiology, 2017, 8, 235.	3.5	73
57	Invasive Non-Typhoidal Salmonella Typhimurium ST313 Are Not Host-Restricted and Have an Invasive Phenotype in Experimentally Infected Chickens. PLoS Neglected Tropical Diseases, 2013, 7, e2487.	3.0	72
58	Public health surveillance in the UK revolutionises our understanding of the invasive Salmonella Typhimurium epidemic in Africa. Genome Medicine, 2017, 9, 92.	8.2	71
59	The nucleoid-associated protein StpA binds curved DNA, has a greater DNA-binding affinity than H-NS and is present in significant levels in hns mutants. Biochimie, 2001, 83, 243-249.	2.6	68
60	Salmonella Induces Flagellin- and MyD88-Dependent Migration of Bacteria-Capturing Dendritic Cells Into the Gut Lumen. Gastroenterology, 2009, 137, 579-587.e2.	1.3	68
61	Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nature Microbiology, 2021, 6, 327-338.	13.3	68
62	Comparative Genomic Indexing Reveals the Phylogenomics of Escherichia coli Pathogens. Infection and Immunity, 2003, 71, 4674-4683.	2.2	67
63	A novel strategy for the identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites in closely related bacteria. Nucleic Acids Research, 2006, 34, e3-e3.	14.5	67
64	The Bacterial Signal Molecule, ppGpp, Mediates the Environmental Regulation of Both the Invasion and Intracellular Virulence Gene Programs of Salmonella. Journal of Biological Chemistry, 2006, 281, 30112-30121.	3.4	66
65	The Escherichia coli genome sequence: the end of an era or the start of the FUN?. Molecular Microbiology, 1997, 26, 417-422.	2.5	65
66	Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar Typhimurium. Microbiology (United) Tj ETQq0 0 0 r	gBTL/ ® verl	oc ls4 0 Tf 50
67	DNA Binding Is Not Sufficient for H-NS-mediated Repression ofproU Expression. Journal of Biological Chemistry, 1997, 272, 12083-12090.	3.4	63
68	sRNAs and the virulence of <i>Salmonella enterica </i> serovar Typhimurium. RNA Biology, 2012, 9, 437-445.	3.1	63
69	Novel Phenotypes of Escherichia coli tat Mutants Revealed by Global Gene Expression and Phenotypic Analysis. Journal of Biological Chemistry, 2004, 279, 47543-47554.	3.4	62
70	Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580. PLoS Biology, 2019, 17, e3000059.	5.6	62
71	Polynucleotide Phosphorylase Negatively Controls spv Virulence Gene Expression in Salmonella enterica. Infection and Immunity, 2006, 74, 1243-1254.	2.2	60
72	<scp>ChIP</scp> â€seq and transcriptome analysis of the <scp><scp>OmpR</scp> regulon of <i><scp>S</scp>almonella enterica</i> reveals accessory genes implicated in host colonization. Molecular Microbiology, 2013, 87, 526-538.</scp>	2.5	60

#	Article	IF	Citations
73	Sequence of the peh gene of Erwinia carotovora: homology between Erwinia and plant enzymes. Molecular Microbiology, 1990, 4, 1029-1036.	2.5	58
74	A <scp>BTP</scp> 1 prophage gene present in invasive nonâ€typhoidal <scp><i>S</i></scp> <i>almonella</i> determines composition and length of the <scp>O</scp> â€antigen of the lipopolysaccharide. Molecular Microbiology, 2015, 96, 263-275.	2.5	57
75	An Incomplete TCA Cycle Increases Survival of Salmonella Typhimurium during Infection of Resting and Activated Murine Macrophages. PLoS ONE, 2010, 5, e13871.	2.5	57
76	Isolation and characterisation of transposon-induced mutants of Erwinia carotovora subsp. atroseptica exhibiting reduced virulence. Molecular Genetics and Genomics, 1989, 217, 141-148.	2.4	55
77	The phage defence island of a multidrug resistant plasmid uses both BREX and type IV restriction for complementary protection from viruses. Nucleic Acids Research, 2021, 49, 11257-11273.	14.5	52
78	The Hâ \in NSâ \in like protein StpA represses the RpoS (Ï f ³⁸) regulon during exponential growth of <i>Salmonella</i> Typhimurium. Molecular Microbiology, 2009, 74, 1169-1186.	2.5	51
79	Prophages encode phage-defense systems with cognate self-immunity. Cell Host and Microbe, 2021, 29, 1620-1633.e8.	11.0	50
80	Green fluorescent protein as a marker for conditional gene expression in bacterial cells. Methods in Enzymology, 2002, 358, 43-66.	1.0	49
81	The Leucine-Responsive Regulatory Protein, Lrp, Activates Transcription of the <i>fim</i> Operon in <i>Salmonella enterica</i> Serovar Typhimurium via the <i>fimZ</i> Regulatory Gene. Journal of Bacteriology, 2008, 190, 602-612.	2.2	49
82	Decoding the stoichiometric composition and organisation of bacterial metabolosomes. Nature Communications, 2020, 11, 1976.	12.8	49
83	Use of TnphoA to enrich for extracellular enzyme mutants of Erwinia carotovora subspecies carotovora. Molecular Microbiology, 1987, 1, 381-386.	2.5	45
84	The primary transcriptome, small RNAs and regulation of antimicrobial resistance in Acinetobacter baumannii ATCC 17978. Nucleic Acids Research, 2018, 46, 9684-9698.	14.5	42
85	Efficient transformation of Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica. Journal of Bacteriology, 1985, 161, 786-788.	2.2	41
86	Measurement of bacterial gene expression in vivo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 601-611.	4.0	40
87	Transcriptional Profiling of Colicin-Induced Cell Death of Escherichia coli MG1655 Identifies Potential Mechanisms by Which Bacteriocins Promote Bacterial Diversity. Journal of Bacteriology, 2004, 186, 866-869.	2.2	40
88	Transposon mutagenesis of Erwinia using phage \hat{l} » vectors. Molecular Genetics and Genomics, 1986, 203, 524-528.	2.4	38
89	The Lactic Acid-Induced Acid Tolerance Response in Salmonella enterica Serovar Typhimurium Induces Sensitivity to Hydrogen Peroxide. Applied and Environmental Microbiology, 2006, 72, 5623-5625.	3.1	38
90	Structural characterization of the N-terminal oligomerization domain of the bacterial chromatin-structuring protein, H-NS. Journal of Molecular Biology, 2001, 306, 1127-1137.	4.2	37

#	Article	IF	Citations
91	Escherichia coli Cytochrome c Nitrite Reductase NrfA. Methods in Enzymology, 2008, 437, 63-77.	1.0	36
92	Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathogens, 2021, 17, e1009280.	4.7	34
93	Virulence gene regulation in <i> Salmonella enterica < /i > . Annals of Medicine, 2001, 33, 178-185.</i>	3.8	33
94	Salicylidene acylhydrazide-mediated inhibition of type III secretion system-1 in Salmonella enterica serovar Typhimurium is associated with iron restriction and can be reversed by free iron. FEMS Microbiology Letters, 2010, 302, 114-122.	1.8	32
95	Salmonella transcriptomics: relating regulons, stimulons and regulatory networks to the process of infection. Current Opinion in Microbiology, 2006, 9, 109-116.	5.1	29
96	Detoxification of nitric oxide by the flavorubredoxin of Salmonella enterica serovar Typhimurium. Biochemical Society Transactions, 2005, 33, 198-199.	3.4	28
97	Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase. BMC Systems Biology, 2009, 3, 108.	3.0	28
98	A third mode of surfaceâ€associated growth: immobilization of ⟨i⟩Salmonella enterica⟨ i⟩ serovar Typhimurium modulates the RpoSâ€directed transcriptional programme. Environmental Microbiology, 2012, 14, 1855-1875.	3.8	27
99	A window into lysogeny: revealing temperate phage biology with transcriptomics. Microbial Genomics, 2020, 6, .	2.0	25
100	Cellulose mediates attachment of <i>Salmonella enterica</i> Serovar Typhimurium to tomatoes. Environmental Microbiology Reports, 2011, 3, 569-573.	2.4	24
101	The challenge of relating gene expression to the virulence of Salmonella enterica serovar Typhimurium. Current Opinion in Biotechnology, 2011, 22, 200-210.	6.6	24
102	It's easy to build your own microarrayer!. Trends in Microbiology, 2001, 9, 154-156.	7.7	22
103	Microarray Analysis of Response of Salmonella during Infection of HLA-B27- Transfected Human Macrophage-Like U937 Cells. BMC Genomics, 2010, 11, 456.	2.8	22
104	Phenotypic Characterization of Salmonella Isolated from Food Production Environments Associated with Lowâ€"Water Activity Foods. Journal of Food Protection, 2013, 76, 1488-1499.	1.7	20
105	Comparative analysis of Salmonella susceptibility and tolerance to the biocide chlorhexidine identifies a complex cellular defense network. Frontiers in Microbiology, 2014, 5, 373.	3.5	20
106	The fitness landscape of the African Salmonella Typhimurium ST313 strain D23580 reveals unique properties of the pBT1 plasmid. PLoS Pathogens, 2019, 15, e1007948.	4.7	20
107	Evasion of MAIT cell recognition by the African <i>Salmonella</i> Typhimurium ST313 pathovar that causes invasive disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20717-20728.	7.1	20
108	An accessible, efficient and global approach for the large-scale sequencing of bacterial genomes. Genome Biology, 2021, 22, 349.	8.8	20

#	Article	IF	Citations
109	Exposure of Salmonella enterica Serovar Typhimurium to Three Humectants Used in the Food Industry Induces Different Osmoadaptation Systems. Applied and Environmental Microbiology, 2015, 81, 6800-6811.	3.1	19
110	The use of chicken and insect infection models to assess the virulence of African Salmonella Typhimurium ST313. PLoS Neglected Tropical Diseases, 2019, 13, e0007540.	3.0	19
111	A widespread family of WYL-domain transcriptional regulators co-localizes with diverse phage defence systems and islands. Nucleic Acids Research, 2022, 50, 5191-5207.	14.5	19
112	Multiple redundant stress resistance mechanisms are induced in Salmonella enterica serovar Typhimurium in response to alteration of the intracellular environment via TLR4 signalling. Microbiology (United Kingdom), 2009, 155, 2919-2929.	1.8	18
113	InvS Coordinates Expression of PrgH and FimZ and Is Required for Invasion of Epithelial Cells by Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 2017, 199, .	2.2	18
114	A short-oligonucleotide microarray that allows improved detection of gastrointestinal tract microbial communities. BMC Microbiology, 2008, 8, 195.	3.3	17
115	Salmonella identified in pigs in Kenya and Malawi reveals the potential for zoonotic transmission in emerging pork markets. PLoS Neglected Tropical Diseases, 2020, 14, e0008796.	3.0	17
116	Functional Transcriptomics for Bacterial Gene Detectives. Microbiology Spectrum, 2018, 6, .	3.0	16
117	The diversity, evolution and ecology of Salmonella in venomous snakes. PLoS Neglected Tropical Diseases, 2019, 13, e0007169.	3.0	16
118	Genetic variation in the MacAB-TolC efflux pump influences pathogenesis of invasive Salmonella isolates from Africa. PLoS Pathogens, 2020, 16, e1008763.	4.7	15
119	Characteristics of <i>Salmonella </i> Recovered From Stools of Children Enrolled in the Global Enteric Multicenter Study. Clinical Infectious Diseases, 2021, 73, 631-641.	5 . 8	14
120	Biogenesis of a bacterial metabolosome for propanediol utilization. Nature Communications, 2022, 13,	12.8	12
121	ArrayOme: a program for estimating the sizes of microarray-visualized bacterial genomes. Nucleic Acids Research, 2005, 33, e3-e3.	14.5	11
122	All Stressed Out. Salmonella Pathogenesis and Reactive Nitrogen Species. Advances in Microbial Physiology, 2009, 56, 1-28.	2.4	11
123	BABAR: an R package to simplify the normalisation of common reference design microarray-based transcriptomic datasets. BMC Bioinformatics, 2010, 11, 73.	2.6	10
124	Pneumococcal Colonization and Virulence Factors Identified Via Experimental Evolution in Infection Models. Molecular Biology and Evolution, 2021, 38, 2209-2226.	8.9	9
125	Scanning mutagenesis of RNA-binding protein ProQ reveals a quality control role for the Lon protease. Rna, 2021, 27, 1512-1527.	3.5	9
126	The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics. Current Opinion in Microbiology, 2013, 16, 643-651.	5.1	8

#	Article	IF	Citations
127	Isolation and Characterisation of Bacteriophages with Activity against Invasive Non-Typhoidal Salmonella Causing Bloodstream Infection in Malawi. Viruses, 2021, 13, 478.	3.3	8
128	Nonsense-suppressor mutants of Erwinia carotovorasubsp.carotovora. FEMS Microbiology Letters, 1985, 28, 103-106.	1.8	7
129	Cloning of the cysB gene of Erwinia carotovora subsp. carotovora, and the identification of its product. Molecular Genetics and Genomics, 1987, 207, 466-470.	2.4	6
130	4 Molecular methods for monitoring bacterial gene expression during infection. Methods in Microbiology, 2002, 31, 55-91.	0.8	6
131	Salmonella enterica Serovar Panama, an Understudied Serovar Responsible for Extraintestinal Salmonellosis Worldwide. Infection and Immunity, 2019, 87, .	2.2	6
132	Complete Genome Sequences of African Salmonella enterica Serovar Enteritidis Clinical Isolates Associated with Bloodstream Infection. Microbiology Resource Announcements, 2021, 10, .	0.6	6
133	H-NS Represses Salmonella enterica Serovar Typhimurium dsbA Expression during Exponential Growth. Journal of Bacteriology, 2004, 186, 910-918.	2.2	4
134	Lower Density and Shorter Duration of Nasopharyngeal Carriage by Pneumococcal Serotype 1 (ST217) May Explain Its Increased Invasiveness over Other Serotypes. MBio, 2020, 11, .	4.1	4
135	Transcriptional Organization of the Salmonella Typhimurium Phage P22 pid ORFan Locus. International Journal of Molecular Sciences, 2022, 23, 1253.	4.1	2
136	Comparative imaging of a bacterial surface-located GFP fusion protein by epifluorescence and scanning near-field optical microscopy. Journal of Microscopy, 2005, 218, 46-51.	1.8	1
137	7.2 Genetic Approaches to the Study of Pathogenic Salmonellae. Methods in Microbiology, 1998, 27, 349-357.	0.8	0
138	Editorial overview: Genomics: The era of genomically-enabled microbiology. Current Opinion in Microbiology, 2015, 23, ix-x.	5.1	0
139	Functional Transcriptomics for Bacterial Gene Detectives. , 2018, , 547-561.		0
140	Salmonella enterica serovar Typhimurium Induces Rapid Migration of Dendritic Cells into the Gut Lumen. FASEB Journal, 2008, 22, 852.11.	0.5	0
141	Global gene expression profiling of a virulent Klebsiella pneumoniae strain during pulmonary infection. Access Microbiology, $2019,1,.$	0.5	0
142	Title is missing!. , 2019, 15, e1007948.		0
143	Title is missing!. , 2019, 15, e1007948.		0
144	Title is missing!. , 2019, 15, e1007948.		0