
Paul E Sheehan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8458593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced protonic conductivity and IFET behavior in individual proton-doped electrospun chitosan fibers. Journal of Materials Chemistry C, 2019, 7, 10833-10840.	5.5	6

2 Hydrogenated Graphene: Transferring Electronic Devices with Hydrogenated Graphene (Adv. Mater.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

3	Chemistries for Making Additive Nanolithography in OrmoComp Permissive for Cell Adhesion and Growth. ACS Applied Materials & amp; Interfaces, 2019, 11, 19793-19798.	8.0	6
4	Transferring Electronic Devices with Hydrogenated Graphene. Advanced Materials Interfaces, 2019, 6, 1801974.	3.7	6
5	Hydrogen-assisted graphene transfer: surface engineering for chemical, electronic, and biological applications. , 2018, , .		1
6	Hybridized graphene materials. , 2018, , .		0
7	Graphene planar lightwave circuit sensors for chemical detection. Proceedings of SPIE, 2017, , .	0.8	2
8	Friction between van der Waals Solids during Lattice Directed Sliding. Nano Letters, 2017, 17, 4116-4121.	9.1	48
9	Fluorinated Graphene Enables the Growth of Inorganic Thin Films by Chemical Bath Deposition on Otherwise Inert Substrates. ACS Applied Materials & Interfaces, 2017, 9, 677-683.	8.0	3
10	Characterizing Multi-layer Pristine Graphene, Its Contaminants, and Their Origin Using Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1740-1741.	0.4	3
11	Protection from Below: Stabilizing Hydrogenated Graphene Using Graphene Underlayers. Langmuir, 2017, 33, 13749-13756.	3.5	12
12	Nanopatterning of GeTe phase change films via heated-probe lithography. Nanoscale, 2017, 9, 8815-8824.	5.6	23
13	Activation of radical addition to graphene by chemical hydrogenation. RSC Advances, 2016, 6, 93356-93362.	3.6	9
14	Transfer of Chemically Modified Graphene with Retention of Functionality for Surface Engineering. Nano Letters, 2016, 16, 1455-1461.	9.1	19
15	Dry graphene transfer print to polystyrene and ultra-high molecular weight polyethylene â~' Detailed chemical, structural, morphological and electrical characterization. Carbon, 2015, 86, 288-300.	10.3	7
16	Patterning Magnetic Regions in Hydrogenated Graphene Via Eâ€Beam Irradiation. Advanced Materials, 2015, 27, 1774-1778.	21.0	58
17	Direct mechanochemical cleavage of functional groups from graphene. Nature Communications, 2015, 6, 6467.	12.8	111
18	Graphene as Electrophile: Reactions of Graphene Fluoride. Journal of Physical Chemistry C, 2015, 119, 10507-10512.	3.1	70

PAUL E SHEEHAN

#	Article	IF	CITATIONS
19	Graphene veils: A versatile surface chemistry for sensors. BioTechniques, 2014, 57, 21-30.	1.8	10
20	van der Waals Screening by Single-Layer Graphene and Molybdenum Disulfide. ACS Nano, 2014, 8, 12410-12417.	14.6	69
21	Etch free graphene transfer to polymers. Surface and Coatings Technology, 2014, 241, 118-122.	4.8	10
22	Graphene synthesis. Diamond and Related Materials, 2014, 46, 25-34.	3.9	215
23	Fluorination of Graphene Enhances Friction Due to Increased Corrugation. Nano Letters, 2014, 14, 5212-5217.	9.1	142
24	Nature Inspires Sensors To Do More with Less. ACS Nano, 2014, 8, 9729-9732.	14.6	7
25	Chemical hydrogenation of single-layer graphene enables completely reversible removal of electrical conductivity. Carbon, 2014, 72, 348-353.	10.3	52
26	Chemical Stability of Graphene Fluoride Produced by Exposure to XeF ₂ . Nano Letters, 2013, 13, 4311-4316.	9.1	109
27	Robust reduction of graphene fluoride using an electrostatically biased scanning probe. Nano Research, 2013, 6, 767-774.	10.4	23
28	Fabrication, Optimization, and Use of Graphene Field Effect Sensors. Analytical Chemistry, 2013, 85, 509-521.	6.5	99
29	Nanoscale Reduction of Graphene Fluoride via Thermochemical Nanolithography. ACS Nano, 2013, 7, 6219-6224.	14.6	39
30	Chemical Gradients on Graphene To Drive Droplet Motion. ACS Nano, 2013, 7, 4746-4755.	14.6	142
31	Aminated graphene for DNA attachment produced via plasma functionalization. Applied Physics Letters, 2012, 100, .	3.3	65
32	High-Density Amine-Terminated Monolayers Formed on Fluorinated CVD-Grown Graphene. Langmuir, 2012, 28, 7957-7961.	3.5	67
33	Engineering Graphene Mechanical Systems. Nano Letters, 2012, 12, 4212-4218.	9.1	67
34	Structural transformations in chemically modified graphene. Solid State Communications, 2012, 152, 1990-1998.	1.9	10
35	Direct-write polymer nanolithography in ultra-high vacuum. Beilstein Journal of Nanotechnology, 2012, 3, 52-56.	2.8	7
36	High-Quality Uniform Dry Transfer of Graphene to Polymers. Nano Letters, 2012, 12, 102-107.	9.1	128

PAUL E SHEEHAN

#	Article	IF	CITATIONS
37	Chemically Isolated Graphene Nanoribbons Reversibly Formed in Fluorographene Using Polymer Nanowire Masks. Nano Letters, 2011, 11, 5461-5464.	9.1	79
38	Optimal method for efficiently removing extracellular nanofilaments from Shewanella oneidensis MR-1. Journal of Microbiological Methods, 2011, 87, 320-324.	1.6	4
39	Nanofabrication using heated probe tips. , 2011, , .		0
40	Local Peeling of Graphene. Science, 2011, 331, 1146-1147.	12.6	12
41	The utility of Shewanella japonica for microbial fuel cells. Bioresource Technology, 2011, 102, 290-297.	9.6	41
42	Properties of Fluorinated Graphene Films. Nano Letters, 2010, 10, 3001-3005.	9.1	980
43	Realâ€Time DNA Detection Using Reduced Graphene Oxide Field Effect Transistors. Advanced Materials, 2010, 22, 5297-5300.	21.0	141
44	Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures. Carbon, 2010, 48, 3382-3390.	10.3	99
45	Reversible electron-induced conductance in polymer nanostructures. Journal of Applied Physics, 2010, 107, .	2.5	5
46	Low temperature elastic properties of chemically reduced and CVD-grown graphene thin films. Diamond and Related Materials, 2010, 19, 875-878.	3.9	20
47	Maskless Nanoscale Writing of Nanoparticleâ `Polymer Composites and Nanoparticle Assemblies using Thermal Nanoprobes. Nano Letters, 2010, 10, 129-133.	9.1	56
48	Wear-Resistant Diamond Nanoprobe Tips with Integrated Silicon Heater for Tip-Based Nanomanufacturing. ACS Nano, 2010, 4, 3338-3344.	14.6	68
49	Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics. Science, 2010, 328, 1373-1376.	12.6	658
50	Conductance Anisotropy in Epitaxial Graphene Sheets Generated by Substrate Interactions. Nano Letters, 2010, 10, 1559-1562.	9.1	97
51	Attomolar protein detection in complex sample matrices with semi-homogeneous fluidic force discrimination assays. Biosensors and Bioelectronics, 2009, 24, 1109-1115.	10.1	62
52	Scanning Probe Lithography of Polymers: Tailoring Morphology and Functionality at the Nanometer Scale. Scanning, 2008, 30, 172-183.	1.5	32
53	Reduced Graphene Oxide Molecular Sensors. Nano Letters, 2008, 8, 3137-3140.	9.1	1,635
54	Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices. Nano Letters, 2008, 8, 3441-3445.	9.1	399

PAUL E SHEEHAN

#	Article	IF	CITATIONS
55	The Assembly of Single-Layer Graphene Oxide and Graphene Using Molecular Templates. Nano Letters, 2008, 8, 3141-3145.	9.1	145
56	The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography. Soft Matter, 2008, 4, 1844.	2.7	30
57	Quantifying the Magnetic Advantage in Magnetotaxis. Biophysical Journal, 2006, 91, 1098-1107.	0.5	59
58	Direct Writing of a Conducting Polymer with Molecular-Level Control of Physical Dimensions and Orientation. Journal of the American Chemical Society, 2006, 128, 6774-6775.	13.7	64
59	The wear kinetics of NaCl under dry nitrogen and at low humidities. Chemical Physics Letters, 2005, 410, 151-155.	2.6	34
60	Detection Limits for Nanoscale Biosensors. Nano Letters, 2005, 5, 803-807.	9.1	612
61	Nanoscale deposition of solid inks via thermal dip pen nanolithography. Applied Physics Letters, 2004, 85, 1589-1591.	3.3	155
62	Dip-Pen Nanolithography of Chemical Templates on Silicon Oxide. Advanced Materials, 2004, 16, 1013-1016.	21.0	37
63	Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sensors and Actuators A: Physical, 2003, 107, 209-218.	4.1	330
64	A simple pen-spotting method for arraying biomolecules on solid substrates. Biosensors and Bioelectronics, 2003, 18, 1455-1459.	10.1	18
65	Thiol Diffusion and the Role of Humidity in "Dip Pen Nanolithography― Physical Review Letters, 2002, 88, 156104.	7.8	178
66	The BARC biosensor applied to the detection of biological warfare agents. Biosensors and Bioelectronics, 2000, 14, 805-813.	10.1	418
67	A biosensor based on magnetoresistance technology. Biosensors and Bioelectronics, 1998, 13, 731-739.	10.1	757
68	Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science, 1997, 277, 1971-1975.	12.6	4,437
69	Nanotribology and Nanofabrication of MoO3 Structures by Atomic Force Microscopy. Science, 1996, 272, 1158-1161.	12.6	252
70	Understanding and Manipulating Inorganic Materials with Scanning Probe Microscopes. Angewandte Chemie International Edition in English, 1996, 35, 686-704.	4.4	31
71	Nanomachining, manipulation and fabrication by force microscopy. Nanotechnology, 1996, 7, 236-240.	2.6	18
72	Electric Field Driven Electron Self-Exchanges in Dry Nafion Containing Mixed-Valent Osmium Bipyridine. The Journal of Physical Chemistry, 1994, 98, 5127-5134.	2.9	23