Johannes S Vrouwenvelder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8458491/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forward osmosis niches in seawater desalination and wastewater reuse. Water Research, 2014, 66, 122-139.	11.3	300
2	Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Frontiers in Microbiology, 2016, 7, 45.	3.5	287
3	Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: A feed spacer problem. Water Research, 2009, 43, 583-594.	11.3	283
4	Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Research, 2013, 47, 7131-7142.	11.3	250
5	Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery. Water Research, 2016, 88, 225-234.	11.3	217
6	Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. Water Research, 2008, 42, 4856-4868.	11.3	207
7	Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Research, 2012, 46, 3737-3753.	11.3	204
8	Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Research, 2017, 113, 191-206.	11.3	194
9	Diagnosis, prediction and prevention of biofouling of NF and RO membranes. Desalination, 2001, 139, 65-71.	8.2	176
10	The Membrane Fouling Simulator: A practical tool for fouling prediction and control. Journal of Membrane Science, 2006, 281, 316-324.	8.2	174
11	Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction. Biofouling, 2009, 25, 543-555.	2.2	164
12	A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water Research, 2013, 47, 3015-3025.	11.3	153
13	Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices. Journal of Membrane Science, 2009, 345, 340-354.	8.2	149
14	Do biological-based strategies hold promise to biofouling control in MBRs?. Water Research, 2013, 47, 5447-5463.	11.3	146
15	Biofouling of membranes for drinking water production. Desalination, 1998, 118, 157-166.	8.2	145
16	Biofouling potential of chemicals used for scale control in RO and NF membranes. Desalination, 2000, 132, 1-10.	8.2	138
17	In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: Formation, structure, detachment and impact of flux change. Water Research, 2014, 67, 243-254.	11.3	136
18	Phosphate limitation to control biofouling. Water Research, 2010, 44, 3454-3466.	11.3	117

#	Article	IF	CITATIONS
19	Water harvesting from municipal wastewater via osmotic gradient: An evaluation of process performance. Journal of Membrane Science, 2013, 447, 50-56.	8.2	117
20	Chemical cleaning of biofouling in reverse osmosis membranes evaluated using magnetic resonance imaging. Journal of Membrane Science, 2010, 362, 202-210.	8.2	112
21	Combining flow cytometry and 16S rRNA gene pyrosequencing: A promising approach for drinking water monitoring and characterization. Water Research, 2014, 63, 179-189.	11.3	111
22	Dynamics of bacterial communities before and after distribution in a full-scale drinking water network. Water Research, 2015, 74, 180-190.	11.3	109
23	Periodic air/water cleaning for control of biofouling in spiral wound membrane elements. Journal of Membrane Science, 2007, 287, 94-101.	8.2	107
24	Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study. Desalination, 2014, 343, 26-37.	8.2	107
25	Biofouling in spiral wound membrane systems: Three-dimensional CFD model based evaluation of experimental data. Journal of Membrane Science, 2010, 346, 71-85.	8.2	105
26	Nuclear magnetic resonance microscopy studies of membrane biofouling. Journal of Membrane Science, 2008, 323, 37-44.	8.2	103
27	Development and characterization of 3D-printed feed spacers for spiral wound membrane systems. Water Research, 2016, 91, 55-67.	11.3	101
28	Modeling the effect of biofilm formation on reverse osmosis performance: Flux, feed channel pressure drop and solute passage. Journal of Membrane Science, 2010, 365, 1-15.	8.2	100
29	Hydraulic resistance of biofilms. Journal of Membrane Science, 2013, 429, 436-447.	8.2	100
30	Impact of spacer thickness on biofouling in forward osmosis. Water Research, 2014, 57, 223-233.	11.3	94
31	Simultaneous phosphorous and nitrogen recovery from source-separated urine: A novel application for fertiliser drawn forward osmosis. Chemosphere, 2018, 203, 482-489.	8.2	91
32	Spacer geometry and particle deposition in spiral wound membrane feed channels. Water Research, 2014, 64, 160-176.	11.3	90
33	Cost of fouling in full-scale reverse osmosis and nanofiltration installations in the Netherlands. Desalination, 2021, 500, 114865.	8.2	90
34	Fouling resilient perforated feed spacers for membrane filtration. Water Research, 2018, 140, 211-219.	11.3	89
35	Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control. Desalination, 2012, 295, 1-10.	8.2	88
36	Review on strategies for biofouling mitigation in spiral wound membrane systems. Desalination, 2018, 434, 189-197.	8.2	88

#	Article	IF	CITATIONS
37	Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production. Water Research, 2016, 94, 62-72.	11.3	86
38	A critical flux to avoid biofouling of spiral wound nanofiltration and reverse osmosis membranes: Fact or fiction?. Journal of Membrane Science, 2009, 326, 36-44.	8.2	85
39	Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels. Chemical Engineering Journal, 2012, 188, 30-39.	12.7	82
40	Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems. Water Research, 2010, 44, 689-702.	11.3	80
41	Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation. Desalination, 2017, 420, 208-215.	8.2	79
42	Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water. Desalination, 2003, 157, 361-365.	8.2	78
43	The potential of standard and modified feed spacers for biofouling control. Journal of Membrane Science, 2012, 403-404, 58-70.	8.2	77
44	The Membrane Fouling Simulator as a new tool for biofouling control of spiral-wound membranes. Desalination, 2007, 204, 170-174.	8.2	68
45	Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System. PLoS ONE, 2016, 11, e0164445.	2.5	68
46	Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes. Water Research, 2015, 87, 299-310.	11.3	67
47	Energy efficient 3D printed column type feed spacer for membrane filtration. Water Research, 2019, 164, 114961.	11.3	67
48	Effects of nano- and microplastics on kidney: Physicochemical properties, bioaccumulation, oxidative stress and immunoreaction. Chemosphere, 2022, 288, 132631.	8.2	66
49	Characterization of feed channel spacer performance using geometries obtained by X-ray computed tomography. Journal of Membrane Science, 2017, 522, 124-139.	8.2	64
50	Sensitive pressure drop measurements of individual lead membrane elements for accurate early biofouling detection. Journal of Membrane Science, 2009, 338, 92-99.	8.2	60
51	Spatially-resolved in-situ quantification of biofouling using optical coherence tomography (OCT) and 3D image analysis in a spacer filled channel. Journal of Membrane Science, 2017, 524, 673-681.	8.2	60
52	Optimisation of a forward osmosis and membrane distillation hybrid system for the treatment of source-separated urine. Separation and Purification Technology, 2019, 212, 368-375.	7.9	60
53	Effect of water temperature on biofouling development in reverse osmosis membrane systems. Water Research, 2016, 103, 149-159.	11.3	58
54	Early warning of biofouling in spiral wound nanofiltration and reverse osmosis membranes. Desalination, 2011, 265, 206-212.	8.2	57

#	Article	IF	CITATIONS
55	A novel scenario for biofouling control of spiral wound membrane systems. Water Research, 2011, 45, 3890-3898.	11.3	56
56	Implications of Chemical Reduction Using Hydriodic Acid on the Antimicrobial Properties of Graphene Oxide and Reduced Graphene Oxide Membranes. Small, 2019, 15, e1901023.	10.0	56
57	Membrane filtration performance enhancement and biofouling mitigation using symmetric spacers with helical filaments. Desalination, 2020, 484, 114454.	8.2	53
58	Impact of biofilm accumulation on transmembrane and feed channel pressure drop: Effects of crossflow velocity, feed spacer and biodegradable nutrient. Water Research, 2014, 50, 200-211.	11.3	51
59	Long-term performance and fouling analysis of full-scale direct nanofiltration (NF) installations treating anoxic groundwater. Journal of Membrane Science, 2014, 468, 339-348.	8.2	51
60	Textile dye wastewater treatment by direct contact membrane distillation: Membrane performance and detailed fouling analysis. Journal of Membrane Science, 2021, 636, 119552.	8.2	51
61	Calcium carbonate scaling in seawater desalination by ammonia–carbon dioxide forward osmosis: Mechanism and implications. Journal of Membrane Science, 2015, 481, 36-43.	8.2	50
62	RO treatment: selection of a pretreatment scheme based on fouling characteristics and operating conditions based on environmental impact. Desalination, 2000, 127, 89-101.	8.2	49
63	Diagnosis of fouling problems of NF and RO membrane installations by a quick scan. Desalination, 2003, 153, 121-124.	8.2	49
64	Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Water Research, 2014, 67, 227-242.	11.3	49
65	The membrane fouling simulator: a suitable tool for prediction and characterisation of membrane fouling. Water Science and Technology, 2007, 55, 197-205.	2.5	47
66	Mini-review: novel non-destructive <i>in situ</i> biofilm characterization techniques in membrane systems. Desalination and Water Treatment, 2016, 57, 22894-22901.	1.0	47
67	Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes. Food and Bioproducts Processing, 2010, 88, 401-408.	3.6	46
68	Production of extracellular inulinase in high-cell-density fed-batch cultures of Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 1994, 42, 516-521.	3.6	45
69	Integrated approach for biofouling control. Water Science and Technology, 2010, 62, 2477-2490.	2.5	44
70	Early non-destructive biofouling detection in spiral wound RO membranes using a mobile earth׳s field NMR. Journal of Membrane Science, 2015, 489, 227-236.	8.2	44
71	A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems. Water Science and Technology: Water Supply, 2016, 16, 865-880.	2.1	42
72	Elucidation and control of biofilm formation processes in water treatment and distribution using the unified biofilm approach. Water Science and Technology, 2003, 47, 83-90.	2.5	41

#	Article	IF	CITATIONS
73	Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor. Water Research, 2016, 95, 27-38.	11.3	41
74	Human urine as a forward osmosis draw solution for the application of microalgae dewatering. Journal of Hazardous Materials, 2019, 378, 120724.	12.4	41
75	Biofouling in forward osmosis systems: An experimental and numerical study. Water Research, 2016, 106, 86-97.	11.3	40
76	Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators. Water Research, 2017, 110, 281-287.	11.3	40
77	A uniform bacterial growth potential assay for different water types. Water Research, 2018, 142, 227-235.	11.3	37
78	Controlling the hydraulic resistance of membrane biofilms by engineering biofilm physical structure. Water Research, 2022, 210, 118031.	11.3	37
79	Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization. Water Research, 2017, 119, 304-311.	11.3	35
80	Impact of Distribution and Network Flushing on the Drinking Water Microbiome. Frontiers in Microbiology, 2018, 9, 2205.	3.5	35
81	Polyelectrolyte-Based Sacrificial Protective Layer for Fouling Control in Reverse Osmosis Desalination. Environmental Science and Technology Letters, 2018, 5, 584-590.	8.7	34
82	Bacterial community dynamics and disinfection impact in cooling water systems. Water Research, 2020, 172, 115505.	11.3	34
83	Kinetic aspects of biofilm formation on surfaces exposed to drinking water. Water Science and Technology, 1995, 32, 61.	2.5	32
84	Hybrid SBR–FO system for wastewater treatment and reuse: Operation, fouling and cleaning. Desalination, 2016, 393, 31-38.	8.2	32
85	Improving the Thermodynamic Energy Efficiency of Battery Electrode Deionization Using Flow-Through Electrodes. Environmental Science & Technology, 2020, 54, 3628-3635.	10.0	32
86	A simple optode based method for imaging O2 distribution and dynamics in tap water biofilms. Water Research, 2011, 45, 5027-5037.	11.3	28
87	Nano/micro plastics $\hat{a} \in$ Challenges on quantification and remediation: A review. Journal of Water Process Engineering, 2021, 42, 102128.	5.6	28
88	Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes. Water Research, 2015, 76, 181-186.	11.3	27
89	Hydrodynamic flow transition dynamics in a spacer filled filtration channel using direct numerical simulation. Journal of Membrane Science, 2019, 590, 117264.	8.2	27
90	Compaction and relaxation of biofilms. Desalination and Water Treatment, 2016, 57, 12902-12914.	1.0	26

#	Article	IF	CITATIONS
91	Application of monochloramine for wastewater reuse: Effect on biostability during transport and biofouling in RO membranes. Journal of Membrane Science, 2018, 551, 243-253.	8.2	26
92	A comparison between chemical cleaning efficiency in lab-scale and full-scale reverse osmosis membranes: Role of extracellular polymeric substances (EPS). Journal of Membrane Science, 2020, 609, 118189.	8.2	26
93	Conceptual design of a dynamic turbospacer for efficient low pressure membrane filtration. Desalination, 2020, 496, 114712.	8.2	26
94	Imaging of membrane concentration polarization by NaCl using 23Na nuclear magnetic resonance. Journal of Membrane Science, 2020, 600, 117868.	8.2	25
95	Novel hole-pillar spacer design for improved hydrodynamics and biofouling mitigation in membrane filtration. Scientific Reports, 2021, 11, 6979.	3.3	25
96	Application of DBNPA dosage for biofouling control in spiral wound membrane systems. , 0, 68, 12-22.		24
97	Early non-destructive biofouling detection and spatial distribution: Application of oxygen sensing optodes. Water Research, 2015, 83, 10-20.	11.3	23
98	Impact of membrane biofouling in the sequential development of performance indicators: Feed channel pressure drop, permeability, and salt rejection. Journal of Membrane Science, 2019, 585, 199-207.	8.2	23
99	Effect of localized hydrodynamics on biofilm attachment and growth in a cross-flow filtration channel. Water Research, 2021, 188, 116502.	11.3	23
100	New approaches to characterizing and understanding biofouling of spiral wound membrane systems. Water Science and Technology, 2012, 66, 88-94.	2.5	22
101	Quantitative measurement and visualization of biofilm O2 consumption rates in membrane filtration systems. Journal of Membrane Science, 2012, 392-393, 66-75.	8.2	22
102	Role of feed water biodegradable substrate concentration on biofouling: Biofilm characteristics, membrane performance and cleanability. Water Research, 2019, 150, 1-11.	11.3	22
103	Biofouling control by phosphorus limitation strongly depends on the assimilable organic carbon concentration. Water Research, 2020, 183, 116051.	11.3	22
104	Enhanced biofilm solubilization by urea in reverse osmosis membrane systems. Water Research X, 2018, 1, 100004.	6.1	21
105	Air/water cleaning for biofouling control in spiral wound membrane elements. Desalination, 2007, 204, 145-147.	8.2	20
106	Online characterization of bacterial processes in drinking water systems. Npj Clean Water, 2020, 3, .	8.0	20
107	Natural deep eutectic solvents as biofilm structural breakers. Water Research, 2021, 201, 117323.	11.3	20
108	Enhanced hydraulic cleanability of biofilms developed under a low phosphorus concentration in reverse osmosis membrane systems. Water Research X, 2021, 10, 100085.	6.1	20

#	Article	IF	CITATIONS
109	Development and testing of a transparent membrane biofouling monitor. Desalination and Water Treatment, 2014, 52, 1807-1819.	1.0	19
110	Effective Biofouling Control Using Periodic H ₂ O ₂ Cleaning with CuO Modified and Polypropylene Spacers. ACS Sustainable Chemistry and Engineering, 2019, 7, 9582-9587.	6.7	19
111	Physicochemical Properties of Extracellular Polymeric Substances Produced by Three Bacterial Isolates From Biofouled Reverse Osmosis Membranes. Frontiers in Microbiology, 2021, 12, 668761.	3.5	19
112	Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control. , 0, 68, 1-11.		19
113	Facultative hybrid RO-PRO concept to improve economic performance of PRO: Feasibility and maximizing efficiency. Desalination, 2020, 478, 114268.	8.2	18
114	Effect of organic micropollutants on biofouling in a forward osmosis process integrating seawater desalination and wastewater reclamation. Journal of Hazardous Materials, 2021, 401, 123386.	12.4	18
115	Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems. Journal of Membrane Science, 2016, 520, 964-971.	8.2	17
116	ATP measurement in seawater reverse osmosis systems: Eliminating seawater matrix effects using a filtration-based method. Desalination, 2019, 453, 1-9.	8.2	17
117	Dynamic feed spacer for fouling minimization in forward osmosis process. Desalination, 2021, 515, 115198.	8.2	17
118	Sacrificial coating development for biofouling control in membrane systems. Desalination, 2020, 496, 114650.	8.2	16
119	Use of chemostat data for modelling extracellular-inulinase production by Kluyveromyces marxianus in a high-cell-density fed-batch process. Journal of Bioscience and Bioengineering, 1995, 79, 54-58.	0.9	14
120	Biofouling in capillary and spiral wound membranes facilitated by marine algal bloom. Desalination, 2017, 424, 74-84.	8.2	14
121	Applicability of short-term accelerated biofouling studies to predict long-term biofouling accumulation in reverse osmosis membrane systems. , 0, 97, 72-78.		14
122	Flow field in fouling spiral wound reverse osmosis membrane modules using MRI velocimetry. Desalination, 2020, 491, 114508.	8.2	13
123	Clinical Autopsy of a Reverse Osmosis Membrane Module. Frontiers in Chemical Engineering, 2021, 3, .	2.7	13
124	Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine. Water Research, 2022, 210, 117975.	11.3	13
125	Cartridge filter selection and replacement: Optimization of produced water quantity, quality, and cost. Desalination, 2020, 473, 114172.	8.2	12
126	Stimuli-Responsive Lysozyme Nanocapsule Engineered Microfiltration Membranes with a Dual-Function of Anti-Adhesion and Antibacteria for Biofouling Mitigation. ACS Applied Materials & Interfaces, 2021, 13, 32205-32216.	8.0	12

#	Article	IF	CITATIONS
127	Pilot-Scale Assessment of Urea as a Chemical Cleaning Agent for Biofouling Control in Spiral-Wound Reverse Osmosis Membrane Elements. Membranes, 2019, 9, 117.	3.0	11
128	Novel Magnetic Resonance Measurements of Fouling in Operating Spiral Wound Reverse Osmosis Membrane Modules. Water Research, 2021, 196, 117006.	11.3	11
129	Magnetic resonance signal moment determination using the Earth's magnetic field. Journal of Magnetic Resonance, 2015, 252, 145-150.	2.1	10
130	Higher boron rejection with a new TFC forward osmosis membrane. Desalination and Water Treatment, 2015, 55, 2734-2740.	1.0	10
131	Development of a setup to enable stable and accurate flow conditions for membrane biofouling studies. Desalination and Water Treatment, 2016, 57, 12893-12901.	1.0	10
132	Adapting Aluminum-Doped Zinc Oxide for Electrically Conductive Membranes Fabricated by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 963-969.	8.0	10
133	Fate of polyphenols in forward osmosis. Journal of Membrane Science, 2021, 621, 118993.	8.2	10
134	A sacrificial protective layer as fouling control strategy for nanofiltration in water treatment. Water Research, 2022, 219, 118554.	11.3	10
135	Recent Developments in Forward Osmosis Processes. Water Intelligence Online, 2017, 16, 9781780408125.	0.3	9
136	Eukaryotic community diversity and spatial variation during drinking water production (by seawater) Tj ETQq0 0 Technology, 2017, 3, 92-105.	0 rgBT /Ov 2.4	verlock 10 Tf 9
137	Effect of phosphate availability on biofilm formation in cooling towers. Biofouling, 2020, 36, 800-815.	2.2	9
138	Assessment of the Impact of Temperature on Biofilm Composition with a Laboratory Heat Exchanger Module. Microorganisms, 2021, 9, 1185.	3.6	9
139	Structural properties and stability of the Betaine-Urea natural deep eutectic solvent. Journal of Molecular Liquids, 2021, 343, 117655.	4.9	9
140	Earth's field MRI for the non-invasive detection of fouling in spiral-wound membrane modules in pressure vessels during operation. , 0, 135, 16-24.		9
141	Stepwise ammonium enrichment using selective battery electrodes. Environmental Science: Water Research and Technology, 2020, 6, 1649-1657.	2.4	8
142	Biofilm removal efficacy using direct electric current in cross-flow ultrafiltration processes for water treatment. Journal of Membrane Science, 2021, 620, 118808.	8.2	8
143	Periodic chemical cleaning with urea: disintegration of biofilms and reduction of key biofilm-forming bacteria from reverse osmosis membranes. Water Research X, 2021, 13, 100117.	6.1	8
144	Antibacterial rGO–CuO–Ag film with contact- and release-based inactivation properties. Environmental Research, 2020, 191, 110130.	7.5	7

#	Article	IF	CITATIONS
145	Sialic Acids: An Important Family of Carbohydrates Overlooked in Environmental Biofilms. Applied Sciences (Switzerland), 2020, 10, 7694.	2.5	7
146	Organic composition in feed solution of forward osmosis membrane systems has no impact on the boron and water flux but reduces scaling. Journal of Membrane Science, 2020, 611, 118306.	8.2	7
147	Monitoring of hollow fiber module velocity field and fouling inside individual fibers using benchtop MRI. Journal of Membrane Science, 2021, 629, 119238.	8.2	7
148	The membrane fouling simulator: development, application, and early-warning of biofouling in RO treatment. , 0, 126, 1-23.		7
149	Characterization of the bacterial community in shower water before and after chlorination. Journal of Water and Health, 2018, 16, 233-243.	2.6	5
150	Efficient cooling tower operation at alkaline pH for the control of Legionella pneumophila and other pathogenic genera. Water Research, 2021, 197, 117047.	11.3	5
151	Potential Pitfalls in Membrane Fouling Evaluation: Merits of Data Representation as Resistance Instead of Flux Decline in Membrane Filtration. Membranes, 2021, 11, 460.	3.0	5
152	Construction and validation of a long-channel membrane test cell for representative monitoring of performance and characterization of fouling over the length of spiral-wound membrane modules. , 0, 89, 1-16.		5
153	Biofouling in membrane devices treating water with different salinities: a modeling study. Desalination and Water Treatment, 2011, 34, 284-289.	1.0	4
154	REMOVED: Modeling Biofouling, Scaling and Combined Fouling in Reverse Osmosis Membrane Devices. Procedia Engineering, 2012, 44, 341-342.	1.2	4
155	Phosphorus Concentration in Water Affects the Biofilm Community and the Produced Amount of Extracellular Polymeric Substances in Reverse Osmosis Membrane Systems. Membranes, 2021, 11, 928.	3.0	4
156	Permeation Increases Biofilm Development in Nanofiltration Membranes Operated with Varying Feed Water Phosphorous Concentrations. Membranes, 2022, 12, 335.	3.0	4
157	Drinking water treatment in The Netherlands: outstanding and still ambitious. Water Science and Technology: Water Supply, 2004, 4, 253-262.	2.1	3
158	Minimum Net Driving Temperature Concept for Membrane Distillation. Membranes, 2020, 10, 100.	3.0	3
159	Evaluation of DNA extraction yield from a chlorinated drinking water distribution system. PLoS ONE, 2021, 16, e0253799.	2.5	3
160	Real-time membrane fouling analysis for the assessment of reclamation potential of textile wastewater processed by membrane distillation. Journal of Water Process Engineering, 2021, 43, 102296.	5.6	3
161	Integral diagnosis of fouling problems by analysing biomass and inorganic compounds in membrane elements used in water treatment. Water Science and Technology: Water Supply, 2003, 3, 211-215.	2.1	2

162 Biofouling patterns in spacer filled channels: High resolution imaging for characterization of heterogeneous biofilms. , 0, 80, 1-10.

#	Article	IF	CITATIONS
163	Quantitative Measurement and Visualization of Biofilm O2 Consumption Rates Inmembrane Filtration Systems. Procedia Engineering, 2012, 44, 233-234.	1.2	1
164	Hydraulic Biofilm Resistance. Procedia Engineering, 2012, 44, 539-541.	1.2	0
165	Insignificant Impact of Chemotactic Responses of Pseudomonas aeruginosa on the Bacterial Attachment to Organic Pre-Conditioned RO Membranes. Membranes, 2019, 9, 162.	3.0	Ο
166	Biofilms in membrane systems for drinking water production. , 2020, , 157-177.		0