Jianbo Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8457877/publications.pdf

Version: 2024-02-01

345 17,644 69 109
papers citations h-index g-index

355 355 355 17693
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (<i>Fagopyrum tataricum</i>). Critical Reviews in Food Science and Nutrition, 2023, 63, 657-673.	10.3	59
2	Enhancement of bioavailability and bioactivity of diet-derived flavonoids by application of nanotechnology: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 378-393.	10.3	47
3	Advances on delta 5-unsaturated-polymethylene-interrupted fatty acids: Resources, biosynthesis, and benefits. Critical Reviews in Food Science and Nutrition, 2023, 63, 767-789.	10.3	7
4	Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Critical Reviews in Food Science and Nutrition, 2023, 63, 1901-1929.	10.3	41
5	Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Critical Reviews in Food Science and Nutrition, 2023, 63, 2773-2789.	10.3	17
6	Harnessing polyphenol power by targeting eNOS for vascular diseases. Critical Reviews in Food Science and Nutrition, 2023, 63, 2093-2118.	10.3	10
7	Mangiferin: a review of dietary sources, absorption, metabolism, bioavailability, and safety. Critical Reviews in Food Science and Nutrition, 2023, 63, 3046-3064.	10.3	23
8	Benefits, toxicity and current market of cannabidiol in edibles. Critical Reviews in Food Science and Nutrition, 2023, 63, 5800-5812.	10.3	8
9	Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Critical Reviews in Food Science and Nutrition, 2023, 63, 6285-6308.	10.3	14
10	Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability and quality. Critical Reviews in Food Science and Nutrition, 2023, 63, 8357-8374.	10.3	7
11	A multifunctional study of naturally occurring pyrazines in biological systems; formation mechanisms, metabolism, food applications and functional properties. Critical Reviews in Food Science and Nutrition, 2023, 63, 5322-5338.	10.3	8
12	A review on processing methods and functions of wheat germ-derived bioactive peptides. Critical Reviews in Food Science and Nutrition, 2023, 63, 5577-5593.	10.3	13
13	Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Critical Reviews in Food Science and Nutrition, 2023, 63, 8489-8510.	10.3	33
14	Recent Development in Antioxidant Peptides of Woody Oil Plant By-Products. Food Reviews International, 2023, 39, 5479-5500.	8.4	2
15	Coarse cereals modulating chronic low-grade inflammation: review. Critical Reviews in Food Science and Nutrition, 2023, 63, 9694-9715.	10.3	4
16	The potential role of extracellular vesicles in bioactive compound-based therapy: A review of recent developments. Critical Reviews in Food Science and Nutrition, 2023, 63, 10959-10973.	10.3	3
17	Exploration of natural flavones' bioactivity and bioavailability in chronic inflammation induced-type-2 diabetes mellitus. Critical Reviews in Food Science and Nutrition, 2023, 63, 11640-11667.	10.3	6
18	Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Critical Reviews in Food Science and Nutrition, 2023, 63, 11967-11986.	10.3	3

#	Article	IF	CITATIONS
19	Nutritional value of barley cereal and better opportunities for its processing as a value-added food: a comprehensive review. Critical Reviews in Food Science and Nutrition, 2022, 62, 1092-1104.	10.3	44
20	Polyphenols and neurodegenerative diseases: focus on neuronal regeneration. Critical Reviews in Food Science and Nutrition, 2022, 62, 3421-3436.	10.3	28
21	Antioxidant and anticancer potentials of edible flowers: where do we stand?. Critical Reviews in Food Science and Nutrition, 2022, 62, 8589-8645.	10.3	17
22	Absorption, metabolism and bioavailability of flavonoids: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 7730-7742.	10.3	90
23	Starch-digesting product analysis based on the hydrophilic interaction liquid chromatography coupled mass spectrometry method to evaluate the inhibition of flavonoids on pancreatic α-amylase. Food Chemistry, 2022, 372, 131175.	8.2	5
24	Active sites of peptides Asp-Asp-Asp-Tyr and Asp-Tyr-Asp-Asp protect against cellular oxidative stress. Food Chemistry, 2022, 366, 130626.	8.2	20
25	Investigation and dynamic profiling of oligopeptides, free amino acids and derivatives during Pu-erh tea fermentation by ultra-high performance liquid chromatography tandem mass spectrometry. Food Chemistry, 2022, 371, 131176.	8.2	26
26	A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chemistry, 2022, 367, 130743.	8.2	76
27	Valorization of kiwi agricultural waste and industry by-products by recovering bioactive compounds and applications as food additives: A circular economy model. Food Chemistry, 2022, 370, 131315.	8.2	62
28	Freezing characteristics and relative permittivity of rice flour gel in pulsed electric field assisted freezing. Food Chemistry, 2022, 373, 131449.	8.2	14
29	A dual-signal fluorescent sensor based on MoS2 and CdTe quantum dots for tetracycline detection in milk. Food Chemistry, 2022, 378, 132076.	8.2	42
30	Chitosan and flavonoid glycosides are promising combination partners for enhanced inhibition of heterocyclic amine formation in roast beef. Food Chemistry, 2022, 375, 131859.	8.2	10
31	The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chemistry, 2022, 375, 131904.	8.2	55
32	Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-34.	4.0	33
33	Pigment Composition of Nine Brown Algae from the Iberian Northwestern Coastline: Influence of the Extraction Solvent. Marine Drugs, 2022, 20, 113.	4.6	17
34	Extraction of lipids from microalgae using classical and innovative approaches. Food Chemistry, 2022, 384, 132236.	8.2	58
35	Onion (<i>Allium cepa</i> L.) bioactives: Chemistry, pharmacotherapeutic functions, and industrial applications. Food Frontiers, 2022, 3, 380-412.	7.4	29
36	Development of nanofiber indicator with high sensitivity for pork preservation and freshness monitoring. Food Chemistry, 2022, 381, 132224.	8.2	40

#	Article	IF	Citations
37	Phageâ€based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1843-1867.	11.7	18
38	Organic vs conventional plant-based foods: A review. Food Chemistry, 2022, 383, 132352.	8.2	28
39	Comparative aroma and nutrients profiling in six edible versus nonedible cruciferous vegetables using MS based metabolomics. Food Chemistry, 2022, 383, 132374.	8.2	22
40	Bioactive components and anti-diabetic properties of <i>Moringa oleifera</i> Lam. Critical Reviews in Food Science and Nutrition, 2022, 62, 3873-3897.	10.3	20
41	Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Frontiers in Endocrinology, 2022, 13, 800714.	3.5	81
42	Natural Polyphenols for the Preservation of Meat and Dairy Products. Molecules, 2022, 27, 1906.	3.8	20
43	Evaluating the effects of a standardized polyphenol mixture extracted from poplar-type propolis on healthy and diseased human gut microbiota. Biomedicine and Pharmacotherapy, 2022, 148, 112759.	5.6	13
44	Blockchain: An emerging novel technology to upgrade the current fresh fruit supply chain. Trends in Food Science and Technology, 2022, 124, 1-12.	15.1	24
45	Effects of Torreya grandis Kernel Oil on Lipid Metabolism and Intestinal Flora in C57BL/6J Mice. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-20.	4.0	7
46	Retinoids as anti-cancer agents and their mechanisms of action American Journal of Cancer Research, 2022, 12, 938-960.	1.4	0
47	Recent advances in the biosynthesis, structure–activity relationships, formulations, pharmacology, and clinical trials of fisetin. EFood, 2022, 3, .	3.1	20
48	An Overview of Traditional Uses, Phytochemical Compositions and Biological Activities of Edible Fruits of European and Asian Cornus Species. Foods, 2022, 11, 1240.	4.3	13
49	3,3′,4,5′-Tetramethoxy-trans-stilbene Improves Insulin Resistance by Activating the IRS/PI3K/Akt Pathway and Inhibiting Oxidative Stress. Current Issues in Molecular Biology, 2022, 44, 2175-2185.	2.4	7
50	Myricetin ameliorated prediabetes via immunomodulation and gut microbiota interaction. Food Frontiers, 2022, 3, 749-772.	7.4	22
51	Stability of quercetin in DMEM and cell culture with A549 cells. EFood, 2022, 3, .	3.1	10
52	Fu Brick Tea Manages HFD/STZ-Induced Type 2 Diabetes by Regulating the Gut Microbiota and Activating the IRS1/PI3K/Akt Signaling Pathway. Journal of Agricultural and Food Chemistry, 2022, 70, 8274-8287.	5.2	22
53	Anti-diabetic effects of natural antioxidants from fruits. Trends in Food Science and Technology, 2021, 117, 3-14.	15.1	72
54	Neuroprotective effect of cajaninstilbene acid against cerebral ischemia and reperfusion damages by activating AMPK/Nrf2 pathway. Journal of Advanced Research, 2021, 34, 199-210.	9.5	27

#	Article	IF	CITATIONS
55	Bilayer pH-sensitive colorimetric films with light-blocking ability and electrochemical writing property: Application in monitoring crucian spoilage in smart packaging. Food Chemistry, 2021, 336, 127634.	8.2	58
56	Polyphenol-rich extract of Zhenjiang aromatic vinegar ameliorates high glucose-induced insulin resistance by regulating JNK-IRS-1 and PI3K/Akt signaling pathways. Food Chemistry, 2021, 335, 127513.	8.2	34
57	Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chemistry, 2021, 340, 127876.	8.2	59
58	The occurrence and stability of Maillard reaction products in various traditional Chinese sauces. Food Chemistry, 2021, 342, 128319.	8.2	18
59	Objective measures of greengage wine quality: From taste-active compound and aroma-active compound to sensory profiles. Food Chemistry, 2021, 340, 128179.	8.2	32
60	Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends in Food Science and Technology, 2021, 107, 201-212.	15.1	44
61	Niazirin from Moringa oleifera Lam. attenuates high glucose-induced oxidative stress through PKCζ/Nox4 pathway. Phytomedicine, 2021, 86, 153066.	5.3	24
62	Tricoumaroylspermidine from rose exhibits inhibitory activity against ethanol-induced apoptosis in HepG2 cells. Food and Function, 2021, 12, 5892-5902.	4.6	12
63	New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. International Journal of Molecular Sciences, 2021, 22, 1295.	4.1	35
64	Litchi (<i>Litchi chinensis</i> Sonn.): a comprehensive review of phytochemistry, medicinal properties, and product development. Food and Function, 2021, 12, 9527-9548.	4.6	17
65	Vegetable Extracts and Nutrients Useful in the Recovery from Helicobacter pylori Infection: A Systematic Review on Clinical Trials. Molecules, 2021, 26, 2272.	3.8	9
66	Relationships between Structure and Antioxidant Capacity and Activity of Glycosylated Flavonols. Foods, 2021, 10, 849.	4.3	27
67	Fungal glycosides: Structure and biological function. Trends in Food Science and Technology, 2021, 110, 611-651.	15.1	10
68	Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-45.	4.0	50
69	Bee Pollen: Current Status and Therapeutic Potential. Nutrients, 2021, 13, 1876.	4.1	77
70	Interactions between Phenols and Alkylamides of Sichuan Pepper (<i>Zanthoxylum</i> Genus) in α-Glucosidase Inhibition: A Structural Mechanism Analysis. Journal of Agricultural and Food Chemistry, 2021, 69, 5583-5598.	5.2	11
71	Starch modification with phenolics: methods, physicochemical property alteration, and mechanisms of glycaemic control. Trends in Food Science and Technology, 2021, 111, 12-26.	15.1	45
72	Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends in Food Science and Technology, 2021, 111, 114-127.	15.1	57

#	Article	IF	CITATIONS
73	Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends in Food Science and Technology, 2021, 111, 360-377.	15.1	86
74	Enhancing stability and anti-inflammatory properties of curcumin in ulcerative colitis therapy using liposomes mediated colon-specific drug delivery system. Food and Chemical Toxicology, 2021, 151, 112123.	3.6	31
75	Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. Food Frontiers, 2021, 2, 357-382.	7.4	31
76	Therapeutic and Mechanistic Effects of Curcumin in Huntington's Disease. Current Neuropharmacology, 2021, 19, 1007-1018.	2.9	25
77	Value added immunoregulatory polysaccharides of Hericium erinaceus and their effect on the gut microbiota. Carbohydrate Polymers, 2021, 262, 117668.	10.2	46
78	A neutral polysaccharide with a triple helix structure from ginger: Characterization and immunomodulatory activity. Food Chemistry, 2021, 350, 129261.	8.2	67
79	Natural Resources for Human Health: A New Interdisciplinary Journal Dedicated to Natural Sciences. , 2021, 1, 1-2.		0
80	Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent. Seminars in Cancer Biology, 2021, 73, 331-346.	9.6	37
81	Seaweed Protein Hydrolysates and Bioactive Peptides: Extraction, Purification, and Applications. Marine Drugs, 2021, 19, 500.	4.6	42
82	Revalorization of Almond By-Products for the Design of Novel Functional Foods: An Updated Review. Foods, 2021, 10, 1823.	4.3	20
83	A visual bi-layer indicator based on roselle anthocyanins with high hydrophobic property for monitoring griskin freshness. Food Chemistry, 2021, 355, 129573.	8.2	46
84	Insights into cyclooxygenase-2 inhibition by isolated bioactive compounds 3-caffeoyl-4-dihydrocaffeoyl quinic acid and isorhamnetin 3-O-β-D-glucopyranoside from Salicornia herbacea. Phytomedicine, 2021, 90, 153638.	5.3	3
85	Applications of by-products from the olive oil processing: Revalorization strategies based on target molecules and green extraction technologies. Trends in Food Science and Technology, 2021, 116, 1084-1104.	15.1	42
86	Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. Phytomedicine, 2021, 91, 153664.	5.3	55
87	Development and evaluation of a novel nanofibersolosome for enhancing the stability, in vitro bioaccessibility, and colonic delivery of cyanidin-3-O-glucoside. Food Research International, 2021, 149, 110712.	6.2	10
88	Encapsulation of sea buckthorn (Hippophae rhamnoides L.) leaf extract via an electrohydrodynamic method. Food Chemistry, 2021, 365, 130481.	8.2	11
89	Androstenedione (a Natural Steroid and a Drug Supplement): A Comprehensive Review of Its Consumption, Metabolism, Health Effects, and Toxicity with Sex Differences. Molecules, 2021, 26, 6210.	3.8	18
90	Liquid-Liquid Chromatography Separation of Guaiane-Type Sesquiterpene Lactones from Ferula penninervis Regel & Schmalh. and Evaluation of Their In Vitro Cytotoxic and Melanin Inhibitory Potential. International Journal of Molecular Sciences, 2021, 22, 10717.	4.1	2

#	Article	IF	CITATIONS
91	Use of encapsulation technology to enrich and fortify bakery, pasta, and cereal-based products. Trends in Food Science and Technology, 2021, 118, 688-710.	15.1	31
92	<i>Dendrobium officinale</i> Polysaccharide Alleviates Intestinal Inflammation by Promoting Small Extracellular Vesicle Packaging of miR-433-3p. Journal of Agricultural and Food Chemistry, 2021, 69, 13510-13523.	5.2	21
93	Phytoremediation of Toxic Metals: A Sustainable Green Solution for Clean Environment. Applied Sciences (Switzerland), 2021, 11, 10348.	2.5	27
94	Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease. International Journal of Molecular Sciences, 2021, 22, 12029.	4.1	61
95	Editorial: Targeting Human Inflammatory Skin Diseases With Natural Products: Exploring Potential Mechanisms and Regulatory Pathways. Frontiers in Pharmacology, 2021, 12, 791151.	3.5	2
96	Visual detection of microbial community during three bacteria mixed fermentation through hyperspectral imaging technology. EFood, 2021, , .	3.1	0
97	Essential Oils as Possible Candidates to Be Included in Active Packaging Systems and the Use of Biosensors to Monitor the Quality of Foodstuff. , 2021, 5, .		1
98	Critical Variables Influencing the Ultrasound-Assisted Extraction of Bioactive Compounds—A Review. , 2021, 5, .		4
99	Nutritional Composition of the Atlantic Seaweeds Ulva rigida, Codium tomentosum, Palmaria palmata and Porphyra purpurea. , 2021, 5, .		4
100	Aquaculture and agricultureâ€by products as sustainable sources of omegaâ€3 fatty acids in the food industry. EFood, 2021, 2, 209-233.	3.1	12
101	The Formation of Antibiotic Resistance Genes in Bacterial Communities During Garlic Powder Processing. Frontiers in Nutrition, 2021, 8, 800932.	3.7	1
102	A multifaceted review on dihydromyricetin resources, extraction, bioavailability, biotransformation, bioactivities, and food applications with future perspectives to maximize its value. EFood, 2021, 2, 164-184.	3.1	24
103	Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances, 2020, 38, 107316.	11.7	307
104	Inhibition of resveratrol glucosides (REs) on advanced glycation endproducts (AGEs) formation: inhibitory mechanism and structure-activity relationship. Natural Product Research, 2020, 34, 2490-2494.	1.8	15
105	Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnology Advances, 2020, 38, 107385.	11.7	96
106	Amine-responsive bilayer films with improved illumination stability and electrochemical writing property for visual monitoring of meat spoilage. Sensors and Actuators B: Chemical, 2020, 302, 127130.	7.8	68
107	Advances on application of fenugreek seeds as functional foods: Pharmacology, clinical application, products, patents and market. Critical Reviews in Food Science and Nutrition, 2020, 60, 2342-2352.	10.3	36
108	Targeting NF-ÎB signaling pathway in cancer by dietary polyphenols. Critical Reviews in Food Science and Nutrition, 2020, 60, 2790-2800.	10.3	84

#	Article	lF	CITATIONS
109	Profiling of tyrosinase inhibitors in mango leaves for a sustainable agro-industry. Food Chemistry, 2020, 312, 126042.	8.2	26
110	Microbial bioconversion of the chemical components in dark tea. Food Chemistry, 2020, 312, 126043.	8.2	193
111	Flavonols with a catechol or pyrogallol substitution pattern on ring B readily form stable dimers in phosphate buffered saline at four degrees celsius. Food Chemistry, 2020, 311, 125902.	8.2	23
112	A phenolic glycoside from Moringa oleifera Lam. improves the carbohydrate and lipid metabolisms through AMPK in db/db mice. Food Chemistry, 2020, 311, 125948.	8. 2	49
113	Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food and Chemical Toxicology, 2020, 135, 111013.	3. 6	109
114	Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacological Research, 2020, 151, 104584.	7.1	155
115	Isolation, Identification, and Immunomodulatory Effect of a Peptide from <i>Pseudostellaria heterophylla</i> Protein Hydrolysate. Journal of Agricultural and Food Chemistry, 2020, 68, 12259-12270.	5.2	17
116	Transplanting fecal material from wildâ€type mice fed black raspberries alters the immune system of recipient mice. Food Frontiers, 2020, 1, 253-259.	7.4	7
117	Edible flowers as functional raw materials: A review on anti-aging properties. Trends in Food Science and Technology, 2020, 106, 30-47.	15.1	43
118	An overview of the health benefits of Prunus species with special reference to metabolic syndrome risk factors. Food and Chemical Toxicology, 2020, 144, 111574.	3.6	16
119	Organizing international conferences: What I have experienced and what are the future challenges?. Food Frontiers, 2020, 1, 352-352.	7.4	2
120	Black raspberries attenuate colonic adenoma development in <i>Apc^{Min}</i> mice: Relationship to hypomethylation of promoters and gene bodies. Food Frontiers, 2020, 1, 234-242.	7.4	9
121	Recent advances in genus <i>Mentha</i> : Phytochemistry, antimicrobial effects, and food applications. Food Frontiers, 2020, 1, 435-458.	7.4	23
122	Therapeutic potential of phenylethanoid glycosides: A systematic review. Medicinal Research Reviews, 2020, 40, 2605-2649.	10.5	80
123	Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines, 2020, 8, 336.	3.2	44
124	Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives. Food Frontiers, 2020, 1, 420-434.	7.4	52
125	The algal polysaccharide ulvan suppresses growth of hepatoma cells. Food Frontiers, 2020, 1, 83-101.	7.4	32
126	Investigation of new products and reaction kinetics for myricetin in DMEM via an in situ UPLC–MS–MS analysis. Food Frontiers, 2020, 1, 243-252.	7.4	17

#	Article	IF	Citations
127	Advantages of techniques to fortify food products with the benefits of fish oil. Food Research International, 2020, 137, 109353.	6.2	58
128	Polysaccharides from Marine Enteromorpha: Structure and function. Trends in Food Science and Technology, 2020, 99, 11-20.	15.1	92
129	Hydromethanolic Extracts from Adansonia digitata L. Edible Parts Positively Modulate Pathophysiological Mechanisms Related to the Metabolic Syndrome. Molecules, 2020, 25, 2858.	3.8	11
130	Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers, 2020, 1, 109-133.	7.4	172
131	Preventive potential and mechanism of dietary polyphenols on the formation of heterocyclic aromatic amines. Food Frontiers, 2020, 1, 134-151.	7.4	29
132	Reductive Stress, Bioactive Compounds, Redox-Active Metals, and Dormant Tumor Cell Biology to Develop Redox-Based Tools for the Treatment of Cancer. Antioxidants and Redox Signaling, 2020, 33, 860-881.	5.4	26
133	Advances on the antioxidant peptides from edible plant sources. Trends in Food Science and Technology, 2020, 99, 44-57.	15.1	168
134	Fabrication of Ligusticum chuanxiong polylactic acid microspheres: A promising way to enhance the hepatoprotective effect on bioactive ingredients. Food Chemistry, 2020, 317, 126377.	8.2	16
135	Influence of seasonal variation on phenolic content and in vitro antioxidant activity of Secondatia floribunda A. DC. (Apocynaceae). Food Chemistry, 2020, 315, 126277.	8.2	38
136	Optimization of espresso coffee extraction through variation of particle sizes, perforated disk height and filter basket aimed at lowering the amount of ground coffee used. Food Chemistry, 2020, 314, 126220.	8.2	24
137	Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and Chemosensitivity. Molecules, 2020, 25, 2009.	3.8	58
138	Food intake targeting and improving acidity in diabetes and cancer. Food Frontiers, 2020, 1, 9-12.	7.4	13
139	Fruits By-Products – A Source of Valuable Active Principles. A Short Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 319.	4.1	83
140	<i>Food Frontiers</i> : An academically sponsored new journal. Food Frontiers, 2020, 1, 3-5.	7.4	1
141	Spent coffee grounds: A potential commercial source of phytosterols. Food Chemistry, 2020, 325, 126836.	8.2	27
142	Dietary polyphenols for managing cancers: What have we ignored?. Trends in Food Science and Technology, 2020, 101, 150-164.	15.1	34
143	Effects of Pterostilbene on Diabetes, Liver Steatosis and Serum Lipids. Current Medicinal Chemistry, 2020, 28, 238-252.	2.4	23
144	Black Raspberries Suppress Colorectal Cancer by Enhancing Smad4 Expression in Colonic Epithelium and Natural Killer Cells. Frontiers in Immunology, 2020, 11, 570683.	4.8	12

#	Article	IF	CITATIONS
145	Rapid and visual detection of aflatoxin B1 in foodstuffs using aptamer/G-quadruplex DNAzyme probe with low background noise. Food Chemistry, 2019, 271, 581-587.	8.2	58
146	Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQ-based proteomic analysis. Food Chemistry, 2019, 271, 148-156.	8.2	45
147	Identification and characterization of antioxidant peptides from hydrolysate of blue-spotted stingray and their stability against thermal, pH and simulated gastrointestinal digestion treatments. Food Chemistry, 2019, 271, 614-622.	8.2	81
148	Stereoselective interactions of lactic acid enantiomers with HSA: Spectroscopy and docking application. Food Chemistry, 2019, 270, 429-435.	8.2	44
149	Plasma protein binding of dietary polyphenols to human serum albumin: A high performance affinity chromatography approach. Food Chemistry, 2019, 270, 257-263.	8.2	64
150	The influences of thermal processing on phytochemicals and possible routes to the discovery of new phytochemical conjugates. Critical Reviews in Food Science and Nutrition, 2019, 59, 947-952.	10.3	12
151	Metabolite characterization of powdered fruits and leaves from Adansonia digitata L. (baobab): A multi-methodological approach. Food Chemistry, 2019, 272, 93-108.	8.2	39
152	A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 2019, 272, 494-506.	8.2	314
153	Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Critical Reviews in Food Science and Nutrition, 2019, 59, 3371-3379.	10.3	208
154	Alpinia zerumbet (Pers.): Food and Medicinal Plant with Potential In Vitro and In Vivo Anti-Cancer Activities. Molecules, 2019, 24, 2495.	3.8	20
155	Antihyperglycemic and antihyperlipidemic activities of a polysaccharide from (i>Physalis pubescens / i>L. in streptozotocin (STZ)-induced diabetic mice. Food and Function, 2019, 10, 4868-4876.	4.6	21
156	Protective effects of raspberry on the oxidative damage in HepG2 cells through Keap1/Nrf2-dependent signaling pathway. Food and Chemical Toxicology, 2019, 133, 110781.	3.6	36
157	Recent trends and applications of cellulose nanocrystals in food industry. Trends in Food Science and Technology, 2019, 93, 136-144.	15.1	166
158	Seeds, fermented foods, and agricultural by-products as sources of plant-derived antibacterial peptides. Critical Reviews in Food Science and Nutrition, 2019, 59, S162-S177.	10.3	32
159	Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave. PLoS ONE, 2019, 14, e0200174.	2.5	29
160	Compound K producing from the enzymatic conversion of gypenoside by naringinase. Food and Chemical Toxicology, 2019, 130, 253-261.	3.6	12
161	A value-added cooking process to improve the quality of soybean: Protecting its isoflavones and antioxidant activity. Food Science and Human Wellness, 2019, 8, 195-201.	4.9	18
162	Bioactive phytochemicals. Critical Reviews in Food Science and Nutrition, 2019, 59, 827-829.	10.3	54

#	Article	IF	CITATIONS
163	Inhibitory effect of the extract from Sonchus olearleu on the formation of carcinogenic heterocyclic aromatic amines during the pork cooking. Food and Chemical Toxicology, 2019, 129, 138-143.	3.6	36
164	Antidepressive effects of a chemically characterized maqui berry extract (Aristotelia chilensis) Tj ETQq0 0 0 rgBT / 434-443.	Overlock 1 3.6	10 Tf 50 707 24
165	Flaxseed extract induces apoptosis in human breast cancer MCF-7 cells. Food and Chemical Toxicology, 2019, 127, 188-196.	3.6	23
166	Comparative analysis of chemical composition, antioxidant and anti-proliferative activities of Italian Vitis vinifera by-products for a sustainable agro-industry. Food and Chemical Toxicology, 2019, 127, 127-134.	3.6	22
167	Report of the 3rd International Symposium on Phytochemicals in Medicine and Food (August 25–30th,) Tj ETQo	1 _{8.2} 0.784	ŀ3 <u>1</u> 4 rgBT /○
168	The anti-inflammatory potential of Portulaca oleracea L. (purslane) extract by partial suppression on NF-ÎB and MAPK activation. Food Chemistry, 2019, 290, 239-245.	8.2	71
169	Sonchus oleraceus Linn protects against LPS-induced sepsis and inhibits inflammatory responses in RAW264.7 cells. Journal of Ethnopharmacology, 2019, 236, 63-69.	4.1	28
170	A multidirectional investigation of stem bark extracts of four African plants: HPLC-MS/MS profiling and biological potentials. Journal of Pharmaceutical and Biomedical Analysis, 2019, 168, 217-224.	2.8	11
171	Cardenolides: Insights from chemical structure and pharmacological utility. Pharmacological Research, 2019, 141, 123-175.	7.1	43
172	<i>Arbutus</i> species (Ericaceae) as source of valuable bioactive products. Critical Reviews in Food Science and Nutrition, 2019, 59, 864-881.	10.3	19
173	Antioxidant and cytoprotective activities of an ancient Mediterranean citrus (Citrus lumia Risso) albedo extract: Microscopic observations and polyphenol characterization. Food Chemistry, 2019, 279, 347-355.	8.2	59
174	Relevance of functional foods in the Mediterranean diet: the role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Critical Reviews in Food Science and Nutrition, 2019, 59, 893-920.	10.3	126
175	<i>Rhodiola</i> species: A comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Medicinal Research Reviews, 2019, 39, 1779-1850.	10.5	88
176	Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends in Food Science and Technology, 2019, 85, 55-66.	15.1	86
177	Inhibitory effects of anthocyanins on α-glucosidase activity. Journal of Berry Research, 2019, 9, 109-123.	1.4	6
178	Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Critical Reviews in Food Science and Nutrition, 2019, 59, 830-847.	10.3	123
179	Benefits of multiple micronutrient supplementation in heart failure: A comprehensive review. Critical Reviews in Food Science and Nutrition, 2019, 59, 965-981.	10.3	19
180	Advances in the Tyrosinase Inhibitors from Plant Source. Current Medicinal Chemistry, 2019, 26, 3279-3299.	2.4	31

#	Article	IF	CITATIONS
181	In-silico Subtractive Proteomic Analysis Approach for Therapeutic Targets in MDR Salmonella enterica subsp. enterica serovar Typhi str. CT18. Current Topics in Medicinal Chemistry, 2019, 19, 2708-2717.	2.1	7
182	Stability of dietary polyphenols: It's never too late to mend?. Food and Chemical Toxicology, 2018, 119, 3-5.	3.6	44
183	Simultaneous determination of four sesame lignans and conversion in Monascus aged vinegar using HPLC method. Food Chemistry, 2018, 256, 133-139.	8.2	16
184	Evidence and prospective of plant derived flavonoids as antiplatelet agents: Strong candidates to be drugs of future. Food and Chemical Toxicology, 2018, 119, 355-367.	3.6	66
185	Are by-products from beeswax recycling process a new promising source of bioactive compounds with biomedical properties?. Food and Chemical Toxicology, 2018, 112, 126-133.	3.6	36
186	Essential oil of Citrus lumia Risso: Phytochemical profile, antioxidant properties and activity on the central nervous system. Food and Chemical Toxicology, 2018, 119, 407-416.	3.6	52
187	Regulatory Efficacy of Brown Seaweed <i>Lessonia nigrescens</i> Extract on the Gene Expression Profile and Intestinal Microflora in Type 2 Diabetic Mice. Molecular Nutrition and Food Research, 2018, 62, 1700730.	3.3	52
188	Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage. Food Chemistry, 2018, 264, 1-8.	8.2	114
189	4-Mercaptophenylboronic acid-modified spirally-curved mesoporous silica nanofibers coupled with ultra performance liquid chromatography–mass spectrometry for determination of brassinosteroids in plants. Food Chemistry, 2018, 263, 51-58.	8.2	14
190	Prebiotic effects of resistant starch from purple yam (<i>Dioscorea alata</i> L.) on the tolerance and proliferation ability of <i>Bifidobacterium adolescentis in vitro</i> . Food and Function, 2018, 9, 2416-2425.	4.6	15
191	Modifications of dietary flavonoids towards improved bioactivity: An update on structure–activity relationship. Critical Reviews in Food Science and Nutrition, 2018, 58, 513-527.	10.3	200
192	Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Critical Reviews in Food Science and Nutrition, 2018, 58, 2908-2924.	10.3	145
193	Chemical composition and nutritional function of olive (Olea europaea L.): a review. Phytochemistry Reviews, 2018, 17, 1091-1110.	6.5	55
194	Antioxidant and anti-inflammatory effects of extracts from Maqui berry Aristotelia chilensis in human colon cancer cells. Journal of Berry Research, 2018, 8, 275-296.	1.4	27
195	Chaetominine induces cell cycle arrest in human leukemia K562 and colon cancer SW1116 cells. Oncology Letters, 2018, 16, 4671-4678.	1.8	3
196	Development and validation of a rapid RP-HPLC-DAD analysis method for the quantification of pilocarpine in Pilocarpus microphyllus (Rutaceae). Food and Chemical Toxicology, 2018, 119, 106-111.	3.6	7
197	Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends in Food Science and Technology, 2018, 72, 1-12.	15.1	154
198	Structure-affinity relationship of dietary anthocyanin–HSA interaction. Journal of Berry Research, 2018, 8, 1-9.	1.4	12

#	Article	IF	CITATIONS
199	Polyphenols., 2018,, 45-67.		38
200	Technological aspects and stability of polyphenols. , 2018, , 295-323.		16
201	The anticonvulsant and anti-plasmid conjugation potential of Thymus vulgaris chemistry: An in vivo murine and in vitro study. Food and Chemical Toxicology, 2018, 120, 472-478.	3.6	38
202	Nanoencapsulation of Cyanidin-3- <i>O</i> -glucoside Enhances Protection Against UVB-Induced Epidermal Damage through Regulation of p53-Mediated Apoptosis in Mice. Journal of Agricultural and Food Chemistry, 2018, 66, 5359-5367.	5.2	47
203	Corilagin from longan seed: Identification, quantification, and synergistic cytotoxicity on SKOv3ip and hey cells with ginsenoside Rh2 and 5-fluorouracil. Food and Chemical Toxicology, 2018, 119, 133-140.	3.6	11
204	Gynosaponin TN-1 producing from the enzymatic conversion of gypenoside XLVI by naringinase and its cytotoxicity on hepatoma cell lines. Food and Chemical Toxicology, 2018, 119, 161-168.	3.6	6
205	Phytol: A review of biomedical activities. Food and Chemical Toxicology, 2018, 121, 82-94.	3.6	198
206	UPLC–Orbitrap–MS/MS combined with chemometrics establishes variations in chemical components in green tea from Yunnan and Hunan origins. Food Chemistry, 2018, 266, 534-544.	8.2	80
207	Dietary Flavonoid Aglycones and Their Glycosides: Which Show Better Biological Significance?. Critical Reviews in Food Science and Nutrition, 2017, 57, 00-00.	10.3	307
208	Phytochemicals from fern species: potential for medicine applications. Phytochemistry Reviews, 2017, 16, 379-440.	6.5	92
209	Supramolecular formulation of nitidine chloride can alleviate its hepatotoxicity and improve its anticancer activity. Food and Chemical Toxicology, 2017, 109, 923-929.	3.6	27
210	Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food and Chemical Toxicology, 2017, 109, 1003-1009.	3.6	129
211	Separation of Oligosaccharides from Lotus Seeds via Medium-pressure Liquid Chromatography Coupled with ELSD and DAD. Scientific Reports, 2017, 7, 44174.	3.3	9
212	An insight into anti-diabetic properties of dietary phytochemicals. Phytochemistry Reviews, 2017, 16, 535-553.	6.5	71
213	<i>Annona</i> species (Annonaceae): a rich source of potential antitumor agents?. Annals of the New York Academy of Sciences, 2017, 1398, 30-36.	3.8	35
214	Câ€type starches and their derivatives: structure and function. Annals of the New York Academy of Sciences, 2017, 1398, 47-61.	3.8	22
215	Chemical composition, antioxidant and anti-tyrosinase activities of fractions from Stenoloma chusanum. Industrial Crops and Products, 2017, 107, 539-545.	5.2	11
216	Flavonoids as modulators of metabolic enzymes and drug transporters. Annals of the New York Academy of Sciences, 2017, 1398, 152-167.	3.8	73

#	Article	IF	CITATIONS
217	Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo) Tj ETQq1 10.	784314 rg 5.2	gBT/Overlo
218	Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends in Food Science and Technology, 2017, 66, 135-145.	15.1	77
219	Cytotoxic and antioxidant activities of Macfadyena unguis-cati L. aerial parts and bioguided isolation of the antitumor active components. Industrial Crops and Products, 2017, 107, 531-538.	5.2	10
220	Effects of tetramethylpyrazine from Chinese black vinegar on antioxidant and hypolipidemia activities in HepG2 cells. Food and Chemical Toxicology, 2017, 109, 930-940.	3.6	44
221	Analysis of flavonoids and antioxidants in extracts of ferns from Tianmu Mountain in Zhejiang Province (China). Industrial Crops and Products, 2017, 97, 137-145.	5.2	30
222	In vitro polyphenol effects on apoptosis: An update of literature data. Seminars in Cancer Biology, 2017, 46, 119-131.	9.6	83
223	Hepatoprotective effects of raspberry (Rubus coreanus Miq.) seed oil and its major constituents. Food and Chemical Toxicology, 2017, 110, 418-424.	3.6	27
224	A comprehensive review of agrimoniin. Annals of the New York Academy of Sciences, 2017, 1401, 166-180.	3.8	33
225	2nd international symposium on phytochemicals in medicine and food (2-ISPMF). Phytochemistry Reviews, 2017, 16, 375-377.	6.5	2
226	Seasonal dynamics of the phytochemical constituents and bioactivities of extracts from Stenoloma chusanum (L.) Ching. Food and Chemical Toxicology, 2017, 108, 458-466.	3.6	23
227	Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach. Food Chemistry, 2017, 219, 321-328.	8.2	61
228	Dietary Polyphenols and Type 2 Diabetes: Human Study and Clinical Trial. Free Radical Biology and Medicine, 2017, 112, 158.	2.9	4
229	Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Frontiers in Pharmacology, 2017, 8, 412.	3.5	276
230	A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. International Journal of Molecular Sciences, 2017, 18, 1934.	4.1	155
231	A Review on Konjac Glucomannan Gels: Microstructure and Application. International Journal of Molecular Sciences, 2017, 18, 2250.	4.1	104
232	Ten years of exploration, a new journey to start: advancing Chinese Medicine to the next level. Chinese Medicine, 2017, 12, 28.	4.0	3
233	Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China): Phylogeny and ecological factors. PLoS ONE, 2017, 12, e0173003.	2.5	23
234	A Synergistic effect of artocarpanone from Artocarpus heterophyllus Lam. (Moraceae) on the antibacterial activity of some antibiotics and their effect on membrane permeability. Journal of Intercultural Ethnopharmacology, 2017, 6, 1.	0.9	12

#	Article	IF	Citations
235	Editorial (Thematic Issue: 2015 International Symposium on Phytochemicals in Medicine and Food) Tj ETQq1 1 0.	784314 rş 1.6	gBT /Overloc O
236	Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato. Molecules, 2016, 21, 932.	3.8	45
237	A silkworm infection model to investigate Vibrio vulnificus virulence genes. Molecular Medicine Reports, 2016, 14, 4243-4247.	2.4	5
238	Flavonoids, Antioxidant Potential, and Acetylcholinesterase Inhibition Activity of the Extracts from the Gametophyte and Archegoniophore of Marchantia polymorpha L Molecules, 2016, 21, 360.	3.8	38
239	Cytotoxic, Antitumor and Immunomodulatory Effects of the Water-Soluble Polysaccharides from Lotus (Nelumbo nucifera Gaertn.) Seeds. Molecules, 2016, 21, 1465.	3.8	23
240	The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients, 2016, 8, 78.	4.1	573
241	Extraction of $\hat{l}\pm$ -humulene-enriched oil from clove using ultrasound-assisted supercritical carbon dioxide extraction and studies of its fictitious solubility. Food Chemistry, 2016, 210, 172-181.	8.2	66
242	Agrimonolide from Agrimonia pilosa suppresses inflammatory responses through down-regulation of COX- $2/i$ NOS and inactivation of NF- \hat{I}^0 B in lipopolysaccharide-stimulated macrophages. Phytomedicine, 2016, 23, 846-855.	5.3	87
243	Croton megalobotrys $M\tilde{A}^{1}/4$ ll Arg. and Vitex doniana (Sweet): Traditional medicinal plants in a three-step treatment regimen that inhibit in vitro replication of HIV-1. Journal of Ethnopharmacology, 2016, 191, 331-340.	4.1	16
244	Introduction to the 1st International Symposium on Phytochemicals in Medicine and Food (ISPMF 2015). Journal of Agricultural and Food Chemistry, 2016, 64, 2439-2441.	5.2	4
245	Non-covalent interaction between dietary stilbenoids and human serum albumin: Structure–affinity relationship, and its influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. Food Chemistry, 2016, 202, 383-388.	8.2	49
246	Characterization and hypoglycemic activity of a \hat{l}^2 -pyran polysaccharides from bamboo shoot (Leleba) Tj ETQq0 (0 0 rgBT /0 10:2	Ovgglock 10 ⁻
247	Marine-derived bioactive compounds with anti-obesity effect: A review. Journal of Functional Foods, 2016, 21, 372-387.	3.4	60
248	Phytochemicals in Food and Nutrition. Critical Reviews in Food Science and Nutrition, 2016, 56, S1-S3.	10.3	24
249	Therapeutic Potential of Temperate Forage Legumes: A Review. Critical Reviews in Food Science and Nutrition, 2016, 56, S149-S161.	10.3	50
250	Advance on the Flavonoid <i>C</i> glycosides and Health Benefits. Critical Reviews in Food Science and Nutrition, 2016, 56, S29-S45.	10.3	300
251	Edible Flowers: A Rich Source of Phytochemicals with Antioxidant and Hypoglycemic Properties. Journal of Agricultural and Food Chemistry, 2016, 64, 2467-2474.	5.2	147
252	Bioactive phytochemicals from shoots and roots of Salvia species. Phytochemistry Reviews, 2016, 15, 829-867.	6.5	79

#	Article	IF	Citations
253	Is There Consistency between the Binding Affinity and Inhibitory Potential of Natural Polyphenols as α-amylase Inhibitors?. Critical Reviews in Food Science and Nutrition, 2016, 56, 1630-1639.	10.3	20
254	Agrimonolide and Desmethylagrimonolide Induced HO-1 Expression in HepG2 Cells through Nrf2-Transduction and p38 Inactivation. Frontiers in Pharmacology, 2016, 7, 513.	3.5	27
255	Signature-tagged mutagenesis of <i>Vibrio vulnificus</i> . Journal of Veterinary Medical Science, 2015, 77, 823-828.	0.9	5
256	Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research, 2015, 99, 1-10.	7.1	417
257	Total flavonoid contents, antioxidant potential and acetylcholinesterase inhibition activity of the extracts from 15 ferns in China. Industrial Crops and Products, 2015, 75, 135-140.	5.2	26
258	Advance in Dietary Polyphenols as Aldose Reductases Inhibitors: Structure-Activity Relationship Aspect. Critical Reviews in Food Science and Nutrition, 2015, 55, 16-31.	10.3	58
259	Stability of Dietary Polyphenols under the Cell Culture Conditions: Avoiding Erroneous Conclusions. Journal of Agricultural and Food Chemistry, 2015, 63, 1547-1557.	5.2	123
260	Phytochemicals in medicine and food. Phytochemistry Reviews, 2015, 14, 317-320.	6.5	23
261	The International Symposium on Phytochemicals in Medicine and Food (ISPMF 2015): An introduction. Food Chemistry, 2015, 186, 1.	8.2	9
262	A Review on the Structure-Function Relationship Aspect of Polysaccharides from Tea Materials. Critical Reviews in Food Science and Nutrition, 2015, 55, 930-938.	10.3	75
263	Seasonal dynamics of total flavonoid contents and antioxidant activity of Dryopteris erythrosora. Food Chemistry, 2015, 186, 113-118.	8.2	52
264	Microbial biotransformation of bioactive flavonoids. Biotechnology Advances, 2015, 33, 214-223.	11.7	183
265	Editorial (Thematic Issue: Advances in the Pharmacokinetics of Natural Bioactive Polyphenols). Current Drug Metabolism, 2014, 15, 1-2.	1.2	21
266	Chemical composition and bioactivities of flavonoids-rich extract from Davallia cylindrica Ching. Environmental Toxicology and Pharmacology, 2014, 37, 571-579.	4.0	15
267	Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Functional and Integrative Genomics, 2014, 14, 603-615.	3.5	101
268	Flavonoid concentrations and bioactivity of flavonoid extracts from 19 species of ferns from China. Industrial Crops and Products, 2014, 58, 91-98.	5.2	60
269	Inhibition of flavonoids on acetylcholine esterase: binding and structure–activity relationship. Food and Function, 2014, 5, 2582-2589.	4.6	81
270	Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnology Advances, 2014, 32, 1145-1156.	11.7	254

#	Article	IF	CITATIONS
271	Influence of Diabetes on the Pharmacokinetic Behavior of Natural Polyphenols. Current Drug Metabolism, 2014, 15, 23-29.	1.2	27
272	Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities. Food and Chemical Toxicology, 2013, 51, 242-250.	3.6	102
273	A Review on Structure–Activity Relationship of Dietary Polyphenols Inhibiting α-Amylase. Critical Reviews in Food Science and Nutrition, 2013, 53, 497-506.	10.3	250
274	Advance in Dietary Polyphenols as $\hat{l}\pm$ -Glucosidases Inhibitors: A Review on Structure-Activity Relationship Aspect. Critical Reviews in Food Science and Nutrition, 2013, 53, 818-836.	10.3	259
275	Flavonoids profiles, antioxidant, acetylcholinesterase inhibition activities of extract from Dryoathyrium boryanum (Willd.) Ching. Food and Chemical Toxicology, 2013, 55, 121-128.	3.6	41
276	Tea polysaccharides as food antioxidants: An old woman's tale?. Food Chemistry, 2013, 138, 1923-1927.	8.2	54
277	Natural products for Alzheimer's disease therapy: basic and application. Journal of Pharmacy and Pharmacology, 2013, 65, 1679-1680.	2.4	21
278	Editorial (Hot Topic:Polyphenol-Plasma Proteins Interaction: Its Nature, Analytical Techniques, and) Tj ETQq0 0 0	rgBT/Ovei	rlock 10 Tf 50
279	Metabolism of Dietary Flavonoids in Liver Microsomes. Current Drug Metabolism, 2013, 14, 381-391.	1.2	42
280	EDITORIAL (Hot Topic: Natural Polyphenols Properties: Chemopreventive and Chemosensitizing) Tj ETQq0 0 0 rgl	3T/Overlo	ck 10 Tf 50 3
281	Influences of Glucose on the Dietary Hydroxyflavonoid–Plasma Protein Interaction. Journal of Agricultural and Food Chemistry, 2012, 60, 12116-12121.	5.2	14
282	A Review of Dietary Polyphenol-Plasma Protein Interactions: Characterization, Influence on the Bioactivity, and Structure-Affinity Relationship. Critical Reviews in Food Science and Nutrition, 2012, 52, 85-101.	10.3	198
283	Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine- $6\hat{l}^2$ -hydroxylase. Molecular BioSystems, 2012, 8, 2883.	2.9	50
284	Investigation of the toxic effect of a QDs heterojunction on the interactions between small molecules and plasma proteins by fluorescence and resonance light-scattering spectra. Analyst, The, 2012, 137, 195-201.	3.5	18
285	Effect of CdTe QDs on the protein-drug interactions. Nanotoxicology, 2012, 6, 304-314.	3.0	13
286	Glycation of plasma proteins in type II diabetes lowers the non-covalent interaction affinities for dietary polyphenols. Integrative Biology (United Kingdom), 2012, 4, 502.	1.3	26
287	Molecular mechanism of elicitor-induced tanshinone accumulation in Salvia miltiorrhiza hairy root cultures. Acta Physiologiae Plantarum, 2012, 34, 1421-1433.	2.1	87
288	The effects of elicitation on the expression of key enzyme genes and on production of tropane alkaloids in Anisodus acutangulus plant. Biologia (Poland), 2012, 67, 352-359.	1.5	6

#	Article	IF	Citations
289	Effects of different elicitors on yield of tropane alkaloids in hairy roots of Anisodus acutangulus. Molecular Biology Reports, 2012, 39, 1721-1729.	2.3	40
290	Non-covalent interaction of dietary polyphenols with total plasma proteins of type II diabetes: molecular structure/property–affinity relationships. Integrative Biology (United Kingdom), 2011, 3, 1087.	1.3	28
291	Effect of ZnO#ZnS QDs heterojunctures on the stilbenes–plasma proteins interactions. Molecular BioSystems, 2011, 7, 2452.	2.9	9
292	Noncovalent Interaction of Dietary Polyphenols with Bovine Hemoglobin in Vitro: Molecular Structure/Property–Affinity Relationship Aspects. Journal of Agricultural and Food Chemistry, 2011, 59, 8484-8490.	5.2	60
293	Noncovalent Interaction of Dietary Polyphenols with Common Human Plasma Proteins. Journal of Agricultural and Food Chemistry, 2011, 59, 10747-10754.	5.2	73
294	Molecular property–binding affinity relationship of flavonoids for common rat plasma proteins in vitro. Biochimie, 2011, 93, 134-140.	2.6	32
295	Chemical compositions and bioactivities of crude polysaccharides from tea leaves beyond their useful date. International Journal of Biological Macromolecules, 2011, 49, 1143-1151.	7.5	73
296	Interaction of natural polyphenols with α-amylase in vitro: molecular property–affinity relationship aspect. Molecular BioSystems, 2011, 7, 1883.	2.9	72
297	Interaction of dietary flavonoids with gamma-globulin: molecular property-binding affinity relationship aspect. Food and Function, 2011, 2, 137.	4.6	18
298	ZnO-ZnS QDs interfacial heterostructure for drug and food delivery application: enhancement of the binding affinities of flavonoid aglycones to bovine serum albumin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 850-858.	3.3	40
299	Binding Citrus flavanones to human serum albumin: effect of structure on affinity. Molecular Biology Reports, 2011, 38, 2257-2262.	2.3	32
300	Expression of the zga agglutinin gene in tobacco can enhance its anti-pest ability for peach-potato aphid (Myzus persica). Acta Physiologiae Plantarum, 2011, 33, 2003-2010.	2.1	9
301	Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. BMC Biotechnology, 2011, 11, 43.	3.3	51
302	Molecular property–affinity relationship of flavanoids and flavonoids for HSA ⟨i⟩in vitro⟨ i⟩. Molecular Nutrition and Food Research, 2011, 55, 310-317.	3.3	91
303	Molecular structureâ€affinity relationship of natural polyphenols for bovine γâ€globulin. Molecular Nutrition and Food Research, 2011, 55, S86-92.	3.3	41
304	Interaction of dietary polyphenols with bovine milk proteins: Molecular structure–affinity relationship and influencing bioactivity aspects. Molecular Nutrition and Food Research, 2011, 55, 1637-1645.	3.3	168
305	Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metabolic Engineering, 2011, 13, 319-327.	7.0	256
306	Improvement in the productivity of xylooligosaccharides from rice straw by feed xylanase with ultrafiltration. Archives of Biological Sciences, 2011, 63, 161-166.	0.5	10

#	Article	IF	Citations
307	Pb2+, Cu2+, Zn2+, Mg2+ and Mn2+ reduce the affinities of flavone, genistein and kaempferol for human serum albumin in vitro. Archives of Biological Sciences, 2011, 63, 623-634.	0.5	9
308	Radical scavenging activity of crude polysaccharides from Camellia sinensis. Archives of Biological Sciences, 2011, 63, 717-721.	0.5	0
309	Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydrate Polymers, 2010, 79, 418-422.	10.2	64
310	Green, yellow and red emitting CdTe QDs decreased the affinities of apigenin and luteolin for human serum albumin in vitro. Journal of Hazardous Materials, 2010, 182, 696-703.	12.4	54
311	Effect of Hydrogenation on Ring C of Flavonols onÂTheirÂAffinity for Bovine Serum Albumin. Journal of Solution Chemistry, 2010, 39, 533-542.	1.2	27
312	Structure–affinity relationship of flavones on binding to serum albumins: Effect of hydroxyl groups on ring A. Molecular Nutrition and Food Research, 2010, 54, S253-60.	3.3	100
313	Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA?. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 299-304.	3.9	89
314	Systematic investigation of the influence of CdTe QDs size on the toxic interaction with human serum albumin by fluorescence quenching method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 93-97.	3.9	38
315	CdTe quantum dots (QDs) improve the affinities of baicalein and genistein for human serum albumin in vitro. Journal of Inorganic Biochemistry, 2010, 104, 1148-1155.	3.5	35
316	Determination of tea polysaccharides in Camellia sinensis by a modified phenol-sulfuric acid method. Archives of Biological Sciences, 2010, 62, 669-676.	0.5	66
317	Sulfation of tea polysaccharides: Synthesis, characterization and hypoglycemic activity. International Journal of Biological Macromolecules, 2010, 46, 270-274.	7. 5	90
318	Study on the purification and characterization of a polysaccharide conjugate from tea flowers. International Journal of Biological Macromolecules, 2010, 47, 266-270.	7.5	36
319	Molecular cloning and characterization of glutamate decarboxylase cDNA from the giant-embryo Oryza sativa. Archives of Biological Sciences, 2010, 62, 873-879.	0.5	5
320	Isolation, Characterization, and Application of a Chitosan-Degrading Fungus from Soil. Journal of Microbiology and Biotechnology, 2010, 20, 1114-1120.	2.1	8
321	Effects of chitosan pentamer and chitosan hexamer <i>in vivo</i> and <i>in vitro</i> on gene expression and secretion of cytokines. Food and Agricultural Immunology, 2009, 20, 269-280.	1.4	17
322	Determination of taxifolin in Polygonum orientale and study on its antioxidant activity. Journal of Food Composition and Analysis, 2009, 22, 154-157.	3.9	19
323	Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 977-982.	3.9	35
324	Comparative effects of natural and synthetic diallyl disulfide on apoptosis of human breast-cancer MCF-7 cells. Biotechnology and Applied Biochemistry, 2009, 52, 113.	3.1	8

#	Article	IF	CITATIONS
325	Protective Effects of Tea Polysaccharides and Polyphenols on Skin. Journal of Agricultural and Food Chemistry, 2009, 57, 7757-7762.	5.2	45
326	Separation of chitooligosaccharides and the potent effects on gene expression of cell surface receptor CR3. International Journal of Biological Macromolecules, 2009, 45, 432-436.	7.5	37
327	Glycosylation of Dietary Flavonoids Decreases the Affinities for Plasma Protein. Journal of Agricultural and Food Chemistry, 2009, 57, 6642-6648.	5.2	118
328	Extraction and determination of major hypotensive compounds in bark of Eucommia ulmoides Oliv Archives of Biological Sciences, 2009, 61, 811-817.	0.5	4
329	Influence of B-Ring Hydroxylation on Interactions of Flavonols with Bovine Serum Albumin. Journal of Agricultural and Food Chemistry, 2008, 56, 2350-2356.	5.2	168
330	Investigation of the Mechanism of Enhanced Effect of EGCG on Huperzine $A\hat{E}\frac{1}{4}$ s Inhibition of Acetylcholinesterase Activity in Rats by a Multispectroscopic Method. Journal of Agricultural and Food Chemistry, 2008, 56, 910-915.	5.2	75
331	Comparing the Affinities of Flavonoid Isomers with Protein by Fluorescence Spectroscopy. Analytical Letters, 2008, 41, 521-532.	1.8	24
332	Rapid determination of ciprofloxacin lactate in drugs by the Rayleigh light scattering technique. Measurement Science and Technology, 2007, 18, 859-866.	2.6	24
333	Highly sensitive determination of chloride ions in serum using a Rayleigh light scattering technique. Measurement Science and Technology, 2007, 18, 2043-2047.	2.6	10
334	Adsorption of guanosine, cytidine, and uridine on a \hat{l}^2 -cyclodextrin derivative grafted chitosan. Journal of Applied Polymer Science, 2007, 103, 3050-3055.	2.6	4
335	Analysis of Anions in Alkaline Solutions by Ion Chromatography after Solid-Phase Extraction. Annali Di Chimica, 2007, 97, 49-58.	0.6	4
336	Use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide for rapid detection of methicillin-resistant Staphylococcus aureus by resonance light scattering. Analytica Chimica Acta, 2007, 589, 186-191.	5 . 4	18
337	Analysis of binding interaction between puerarin and bovine serum albumin by multi-spectroscopic method. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 609-615.	2.8	173
338	Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191, 222-227.	3.9	90
339	Comparison of volatile components of Marchantia convoluta obtained by supercritical carbon dioxide extraction and petrol ether extraction. Journal of Food Composition and Analysis, 2007, 20, 45-51.	3.9	26
340	Identification of Organic Acids and Quantification of Dicarboxylic Acids in Bayer Process Liquors by GC–MS. Chromatographia, 2007, 65, 185-190.	1.3	5
341	Highly sensitive determination of trace potassium ion in serum using the resonance light scattering technique with sodium tetraphenylboron. Mikrochimica Acta, 2007, 159, 287-292.	5.0	19
342	The Adsorption of Phenol, m-Cresol and m-Catechol on a Î ² -Cyclodextrin Derivative-Grafted Chitosan and the Removal of Phenols from Industrial Wastewater. Adsorption Science and Technology, 2006, 24, 547-558.	3.2	16

#	Article	IF	CITATIONS
343	Rapid determination of organic acids in Bayer liquors by high-performance liquid chromatography after solid-phase extraction. Minerals Engineering, 2006, 19, 1446-1451.	4.3	16
344	Rapid Separation and Analysis of Six Organic Acids in Bayer Liquors by RP-HPLC after Solid-Phase Extraction. Annali Di Chimica, 2006, 96, 347-354.	0.6	15
345	Neurobehavioral properties of Cymbopogon essential oils and its components. Phytochemistry Reviews, 0, , $1\cdot$	6.5	3