Giorgio Gianini Morbioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8457390/publications.pdf

Version: 2024-02-01

1058476 840776 15 637 11 14 g-index citations h-index papers 15 15 15 942 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review. Analytica Chimica Acta, 2017, 970, 1-22.	5.4	303
2	Improving Sample Distribution Homogeneity in Three-Dimensional Microfluidic Paper-Based Analytical Devices by Rational Device Design. Analytical Chemistry, 2017, 89, 4786-4792.	6.5	51
3	Development and statistical assessment of a paper-based immunoassay for detection of tumor markers. Analytica Chimica Acta, 2017, 950, 156-161.	5.4	44
4	Cutting edge microfluidics: Xurography and a microwave. Sensors and Actuators B: Chemical, 2019, 291, 250-256.	7.8	44
5	A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial. Analytica Chimica Acta, 2020, 1135, 150-174.	5.4	43
6	Towards low-cost bioanalytical tools for sarcosine assays for cancer diagnostics. Analytical Methods, 2016, 8, 7312-7318.	2.7	33
7	Rapid and low-cost development of microfluidic devices using wax printing and microwave treatment. Sensors and Actuators B: Chemical, 2019, 284, 650-656.	7. 8	29
8	Teratogens: a public health issue – a Brazilian overview. Genetics and Molecular Biology, 2017, 40, 387-397.	1.3	26
9	Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems – A review. Analytica Chimica Acta, 2016, 935, 44-57.	5.4	18
10	Green, Low-Cost, User-Friendly, and Elastomeric (GLUE) Microfluidics. ACS Applied Polymer Materials, 2020, 2, 1345-1355.	4.4	15
11	Improved assessment of accuracy and performance indicators in paper-based ELISA. Analytical Methods, 2017, 9, 2644-2653.	2.7	13
12	Characterization and evaluation of ionic liquids for use in rapidly-actuated hydraulic microvalves. Sensors and Actuators B: Chemical, 2020, 303, 127124.	7.8	7
13	A miniaturized, low-cost lens tube based laser-induced fluorescence detection system for automated microfluidic analysis of primary amines. Talanta, 2022, 241, 123227.	5.5	6
14	An automated low-cost modular hardware and software platform for versatile programmable microfluidic device testing and development. Sensors and Actuators B: Chemical, 2021, 346, 130538.	7.8	3
15	How Are These Devices Manufactured?. , 2019, , 89-122.		2