Stéphane Richard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8457196/publications.pdf

Version: 2024-02-01

133 papers 12,444 citations

23567
58
h-index

26613 107 g-index

142 all docs

 $\begin{array}{c} 142 \\ \\ \text{docs citations} \end{array}$

times ranked

142

13025 citing authors

#	Article	IF	CITATIONS
1	Microexon alternative splicing of small <scp>GTPase</scp> regulators: Implication in central nervous system diseases. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1678.	6.4	6
2	POGZ promotes homologyâ€directed DNA repair in an HP1â€dependent manner. EMBO Reports, 2022, 23, e51041.	4.5	9
3	Muscle stem cell polarity requires QKI-mediated alternative splicing of Integrin Alpha-7 (Itga7). Life Science Alliance, 2022, 5, e202101192.	2.8	6
4	PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. Cell Reports, 2022, 38, 110582.	6.4	24
5	Arsenic 3 methyltransferase (AS3MT) automethylates on cysteine residues in vitro. Archives of Toxicology, 2022, 96, 1371-1386.	4.2	2
6	Putting introns on retainer. Nature Chemical Biology, 2022, , .	8.0	0
7	PRMT1 is required for the generation of MHC-associated microglia and remyelination in the central nervous system. Life Science Alliance, 2022, 5, e202201467.	2.8	3
8	Synergistic effects of type I PRMT and PARP inhibitors against non-small cell lung cancer cells. Clinical Epigenetics, 2021, 13, 54.	4.1	28
9	Sam68 promotes hepatic gluconeogenesis via CRTC2. Nature Communications, 2021, 12, 3340.	12.8	12
10	Deletion of RBMX RGG/RG motif in Shashi-XLID syndrome leads to aberrant p53 activation and neuronal differentiation defects. Cell Reports, 2021, 36, 109337.	6.4	13
11	Arginine methylation of SARS-Cov-2 nucleocapsid protein regulates RNA binding, its ability to suppress stress granule formation, and viral replication. Journal of Biological Chemistry, 2021, 297, 100821.	3.4	46
12	Cellular pathways influenced by protein arginine methylation: Implications for cancer. Molecular Cell, 2021, 81, 4357-4368.	9.7	75
13	CRAF Methylation by PRMT6 Regulates Aerobic Glycolysis–Driven Hepatocarcinogenesis via ERKâ€Dependent PKM2 Nuclear Relocalization and Activation. Hepatology, 2020, 71, 1279-1296.	7.3	71
14	DDX5 resolves R-loops at DNA double-strand breaks to promote DNA repair and avoid chromosomal deletions. NAR Cancer, 2020, 2, zcaa028.	3.1	44
15	Genetic evidence for partial redundancy between the arginine methyltransferases CARM1 and PRMT6. Journal of Biological Chemistry, 2020, 295, 17060-17070.	3.4	27
16	Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Nature Communications, 2020, 11, 2396.	12.8	59
17	Limiting the DNA Double-Strand Break Resectosome for Genome Protection. Trends in Biochemical Sciences, 2020, 45, 779-793.	7. 5	27
18	PRMT1-p53 Pathway Controls Epicardial EMT and Invasion. Cell Reports, 2020, 31, 107739.	6.4	37

#	Article	IF	CITATIONS
19	QUAKING Regulates Microexon Alternative Splicing of the Rho GTPase Pathway and Controls Microglia Homeostasis. Cell Reports, 2020, 33, 108560.	6.4	19
20	Genome-wide R-loop analysis defines unique roles for DDX5, XRN2, and PRMT5 in DNA/RNA hybrid resolution. Life Science Alliance, 2020, 3, e202000762.	2.8	43
21	Targeting the RNA-Binding Protein QKI in Myeloid Cells Ameliorates Macrophage-Induced Renal Interstitial Fibrosis. Epigenomes, 2020, 4, 2.	1.8	2
22	Arginine methylation of the <scp>DDX</scp> 5 helicase <scp>RGG</scp> / <scp>RG</scp> motif by <scp>PRMT</scp> 5 regulates resolution of RNA:DNA hybrids. EMBO Journal, 2019, 38, e100986.	7.8	117
23	M-TAP Dance: Targeting PRMT1 and PRMT5 Family Members to Push Cancer Cells Over the Edge. Cancer Cell, 2019, 36, 3-5.	16.8	15
24	The regulation, functions and clinical relevance of arginine methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 642-657.	37.0	364
25	Sam68 impedes the recovery of arterial injury by augmenting inflammatory response. Journal of Molecular and Cellular Cardiology, 2019, 137, 82-92.	1.9	11
26	Protein Arginine Methyltransferase 1 Interacts With PGC1 \hat{l}_{\pm} and Modulates Thermogenic Fat Activation. Endocrinology, 2019, 160, 2773-2786.	2.8	17
27	Sam68 Enables Metabotropic Glutamate Receptor-Dependent LTD in Distal Dendritic Regions of CA1 Hippocampal Neurons. Cell Reports, 2019, 29, 1789-1799.e6.	6.4	9
28	PRMT5 is essential for B cell development and germinal center dynamics. Nature Communications, 2019, 10, 22.	12.8	61
29	GFI1 facilitates efficient DNA repair by regulating PRMT1 dependent methylation of MRE11 and 53BP1. Nature Communications, 2018, 9, 1418.	12.8	42
30	Noise-Induced Dysregulation of <i>Quaking </i> RNA Binding Proteins Contributes to Auditory Nerve Demyelination and Hearing Loss. Journal of Neuroscience, 2018, 38, 2551-2568.	3.6	32
31	Recruitment of lysine demethylase 2A to DNA double strand breaks and its interaction with 53BP1 ensures genome stability. Oncotarget, 2018, 9, 15915-15930.	1.8	10
32	PRMT6 Regulates RAS/RAF Binding and MEK/ERK-Mediated Cancer Stemness Activities in Hepatocellular Carcinoma through CRAF Methylation. Cell Reports, 2018, 25, 690-701.e8.	6.4	76
33	Loss of PRMT5 Promotes PDGFRα Degradation during Oligodendrocyte Differentiation and Myelination. Developmental Cell, 2018, 46, 426-440.e5.	7.0	40
34	Arginine Methylation: The Coming of Age. Molecular Cell, 2017, 65, 8-24.	9.7	720
35	Regenerating muscle with arginine methylation. Transcription, 2017, 8, 175-178.	3.1	18
36	CTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair. Science Advances, 2017, 3, e1601898.	10.3	56

#	Article	IF	CITATIONS
37	Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation. Nature Communications, 2017, 8, 891.	12.8	34
38	Transcriptome profiling of mouse brains with qkl-deficient oligodendrocytes reveals major alternative splicing defects including self-splicing. Scientific Reports, 2017, 7, 7554.	3.3	26
39	Arginine Methylation by PRMT1 Regulates Muscle Stem Cell Fate. Molecular and Cellular Biology, 2017, 37, .	2.3	50
40	Transcriptome profiling in preadipocytes identifies long noncoding RNAs as Sam68 targets. Oncotarget, 2017, 8, 81994-82005.	1.8	13
41	Lysine methylation of FEN1 by SET7 is essential for its cellular response to replicative stress. Oncotarget, 2017, 8, 64918-64931.	1.8	10
42	Emerging functions of the Quaking <scp>RNA</scp> â€binding proteins and link to human diseases. Wiley Interdisciplinary Reviews RNA, 2016, 7, 399-412.	6.4	79
43	Sam68 functions as a transcriptional coactivator of the p53 tumor suppressor. Nucleic Acids Research, 2016, 44, 8726-8741.	14.5	28
44	miR-137 Modulates a Tumor Suppressor Network-Inducing Senescence in Pancreatic Cancer Cells. Cell Reports, 2016, 14, 1966-1978.	6.4	78
45	<i>Quaking</i> Regulates <i>Neurofascin 155</i> Expression for Myelin and Axoglial Junction Maintenance. Journal of Neuroscience, 2016, 36, 4106-4120.	3.6	36
46	RNA G-quadruplexes and their potential regulatory roles in translation. Translation, 2016, 4, e1244031.	2.9	118
47	PRMT7 Preserves Satellite Cell Regenerative Capacity. Cell Reports, 2016, 14, 1528-1539.	6.4	70
48	The p53 status can influence the role of Sam68 in tumorigenesis. Oncotarget, 2016, 7, 71651-71659.	1.8	6
49	p38 Mitogen-Activated Protein Kinase Pathway Regulates Genes during Proliferation and Differentiation in Oligodendrocytes. PLoS ONE, 2015, 10, e0145843.	2.5	17
50	Aven recognition of RNA G-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes. ELife, 2015, 4, .	6.0	83
51	Arginine methylation of hnRNPUL1 regulates interaction with NBS1 and recruitment to sites of DNA damage. Scientific Reports, 2015, 5, 10475.	3.3	32
52	Inhibition of Sam68 triggers adipose tissue browning. Journal of Endocrinology, 2015, 225, 181-189.	2.6	13
53	Sam68 Regulates S6K1 Alternative Splicing during Adipogenesis. Molecular and Cellular Biology, 2015, 35, 1926-1939.	2.3	29
54	Emerging Roles of Disordered Sequences in RNA-Binding Proteins. Trends in Biochemical Sciences, 2015, 40, 662-672.	7.5	195

#	Article	IF	CITATIONS
55	Transcriptional repression of hypoxia-inducible factor-1 (HIF-1) by the protein arginine methyltransferase PRMT1. Molecular Biology of the Cell, 2014, 25, 925-935.	2.1	31
56	Defining the RGG/RG Motif. Molecular Cell, 2013, 50, 613-623.	9.7	512
57	The role of arginine methylation in the DNA damage response. DNA Repair, 2013, 12, 459-465.	2.8	69
58	Sam68 modulates the promoter specificity of NF- \hat{I}^0B and mediates expression of CD25 in activated T cells. Nature Communications, 2013, 4, 1909.	12.8	40
59	Quaking, an RNA-Binding Protein, Is a Critical Regulator of Vascular Smooth Muscle Cell Phenotype. Circulation Research, 2013, 113, 1065-1075.	4.5	86
60	The QKI-5 and QKI-6 RNA Binding Proteins Regulate the Expression of MicroRNA 7 in Glial Cells. Molecular and Cellular Biology, 2013, 33, 1233-1243.	2.3	72
61	SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase. Epigenetics, 2013, 8, 1162-1175.	2.7	30
62	SETD6 monomethylates H2AZ on lysine 7 and is required for the maintenance of embryonic stem cell self-renewal. Epigenetics, 2013, 8, 177-183.	2.7	63
63	Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Scientific Reports, 2013, 3, 1311.	3.3	173
64	Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Human Molecular Genetics, 2012, 21, 136-149.	2.9	176
65	The fight of the Tudor domain "Royal family―for a broken DNA throne. Cell Cycle, 2012, 11, 1483-1484.	2.6	3
66	Stay lean without dieting. Adipocyte, 2012, 1, 246-249.	2.8	3
67	Emerging roles for Sam68 in adipogenesis and neuronal development. RNA Biology, 2012, 9, 1129-1133.	3.1	16
68	Ablation of PRMT6 reveals a role as a negative transcriptional regulator of the p53 tumor suppressor. Nucleic Acids Research, 2012, 40, 9513-9521.	14.5	86
69	JMJD2A Promotes Cellular Transformation by Blocking Cellular Senescence through Transcriptional Repression of the Tumor Suppressor CHD5. Cell Reports, 2012, 2, 1233-1243.	6.4	106
70	The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation. Cell Research, 2012, 22, 305-320.	12.0	68
71	The Sam68 STAR RNA-Binding Protein Regulates mTOR Alternative Splicing during Adipogenesis. Molecular Cell, 2012, 46, 187-199.	9.7	88
72	RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO Journal, 2012, 31, 1865-1878.	7.8	302

#	Article	IF	CITATIONS
73	SAM68 Regulates Neuronal Activity-Dependent Alternative Splicing of Neurexin-1. Cell, 2011, 147, 1601-1614.	28.9	240
74	Patched1 haploinsufficiency impairs ependymal cilia function of the quaking viable mice, leading to fatal hydrocephalus. Molecular and Cellular Neurosciences, 2011, 47, 100-107.	2.2	19
75	Loss of p53 in quaking viable mice leads to Purkinje cell defects and reduced survival. Scientific Reports, 2011, 1, 84.	3.3	8
76	Sam68 marks the transcriptionally active stages of spermatogenesis and modulates alternative splicing in male germ cells. Nucleic Acids Research, 2011, 39, 4961-4974.	14.5	55
77	Type II Arginine Methyltransferase PRMT5 Regulates Gene Expression of Inhibitors of Differentiation/DNA Binding Id2 and Id4 during Glial Cell Differentiation. Journal of Biological Chemistry, 2011, 286, 44424-44432.	3.4	68
78	Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO Journal, 2010, 29, 1248-1261.	7.8	326
79	The QKI-6 RNA Binding Protein Localizes with the MBP mRNAs in Stress Granules of Glial Cells. PLoS ONE, 2010, 5, e12824.	2.5	27
80	The QKI-6 RNA Binding Protein Regulates Actin-interacting Protein-1 mRNA Stability during Oligodendrocyte Differentiation. Molecular Biology of the Cell, 2010, 21, 3029-3040.	2.1	32
81	Reaching for the STARs. Advances in Experimental Medicine and Biology, 2010, , 142-157.	1.6	35
82	Reaching for the stars: Linking RNA binding proteins to diseases. Advances in Experimental Medicine and Biology, 2010, 693, 142-57.	1.6	24
83	The QKI-6 and QKI-7 RNA Binding Proteins Block Proliferation and Promote Schwann Cell Myelination. PLoS ONE, 2009, 4, e5867.	2.5	36
84	An Adaptor Role for Cytoplasmic Sam68 in Modulating Src Activity during Cell Polarization. Molecular and Cellular Biology, 2009, 29, 1933-1943.	2.3	45
85	A Mouse <i>PRMT1 </i> Null Allele Defines an Essential Role for Arginine Methylation in Genome Maintenance and Cell Proliferation. Molecular and Cellular Biology, 2009, 29, 2982-2996.	2.3	160
86	Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. Journal of Cell Biology, 2009, 185, 235-249.	5.2	124
87	Identification of a Sam68 Ribonucleoprotein Complex Regulated by Epidermal Growth Factor. Journal of Biological Chemistry, 2009, 284, 31903-31913.	3.4	25
88	BRK phosphorylates PSF promoting its cytoplasmic localization and cell cycle arrest. Cellular Signalling, 2009, 21, 1415-1422.	3.6	50
89	The STAR RNA binding proteins GLD-1, QKI, SAM68 and SLM-2 bind bipartite RNA motifs. BMC Molecular Biology, 2009, 10, 47.	3.0	64
90	The physiological and pathophysiological role of PRMT1-mediated protein arginine methylation. Pharmacological Research, 2009, 60, 466-474.	7.1	109

#	Article	IF	CITATIONS
91	New implications for the QUAKING RNA binding protein in human disease. Journal of Neuroscience Research, 2008, 86, 233-242.	2.9	112
92	CARM1 promotes adipocyte differentiation by coactivating PPARÎ3. EMBO Reports, 2008, 9, 193-198.	4.5	114
93	Breast tumor kinase BRK requires kinesin-2 subunit KAP3A in modulation of cell migration. Cellular Signalling, 2008, 20, 432-442.	3.6	40
94	RNA-binding proteins in human genetic disease. Trends in Genetics, 2008, 24, 416-425.	6.7	583
95	Motor coordination defects in mice deficient for the Sam68 RNA-binding protein. Behavioural Brain Research, 2008, 189, 357-363.	2.2	47
96	Arginine Methylation of the Histone H3 Tail Impedes Effector Binding. Journal of Biological Chemistry, 2008, 283, 3006-3010.	3.4	167
97	A Glycine-Arginine Domain in Control of the Human MRE11 DNA Repair Protein. Molecular and Cellular Biology, 2008, 28, 3058-3069.	2.3	76
98	Arginine methylation of the HIV-1 nucleocapsid protein results in its diminished function. Aids, 2007, 21, 795-805.	2.2	38
99	Targeting the RNA-binding protein Sam68 as a treatment for cancer?. Future Oncology, 2007, 3, 539-544.	2.4	23
100	The association of Sam68 with Vav1 contributes to tumorigenesis. Cellular Signalling, 2007, 19, 2479-2486.	3.6	21
101	mRNAs Associated with the Sam68 RNA Binding Protein. RNA Biology, 2006, 3, 90-93.	3.1	16
102	Arginine methylation regulates IL-2 gene expression: a role for protein arginine methyltransferase 5 (PRMT5). Biochemical Journal, 2005, 388, 379-386.	3.7	90
103	Target RNA motif and target mRNAs of the Quaking STAR protein. Nature Structural and Molecular Biology, 2005, 12, 691-698.	8.2	240
104	Protection of p27Kip1 mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation. Nature Neuroscience, 2005, 8, 27-33.	14.8	151
105	Ablation of the Sam68 RNA Binding Protein Protects Mice from Age-Related Bone Loss. PLoS Genetics, 2005, 1, e74.	3.5	109
106	Tyrosine Phosphorylation of Sam68 by Breast Tumor Kinase Regulates Intranuclear Localization and Cell Cycle Progression. Journal of Biological Chemistry, 2005, 280, 38639-38647.	3.4	119
107	Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes and Development, 2005, 19, 671-676.	5.9	181
108	Protein Interfaces in Signaling Regulated by Arginine Methylation. Science Signaling, 2005, 2005, re2-re2.	3.6	105

#	Article	IF	CITATIONS
109	Tudor Domains Bind Symmetrical Dimethylated Arginines. Journal of Biological Chemistry, 2005, 280, 28476-28483.	3.4	218
110	Methylation of Tat by PRMT6 Regulates Human Immunodeficiency Virus Type 1 Gene Expression. Journal of Virology, 2005, 79, 124-131.	3.4	179
111	The GAR Motif of 53BP1 is Arginine Methylated by PRMT1 and is Necessary for 53BP1 DNA Binding Activity. Cell Cycle, 2005, 4, 1834-1841.	2.6	121
112	QUAKING KH Domain Proteins as Regulators of Glial Cell Fate and Myelination. RNA Biology, 2005, 2, 37-40.	3.1	49
113	Methylation of MRE11 Regulates its Nuclear Compartmentalization. Cell Cycle, 2005, 4, 981-989.	2.6	70
114	Arginine Methylation. Molecular Cell, 2005, 18, 263-272.	9.7	1,002
115	Depolarization-induced translocation of the RNA-binding protein Sam68 to the dendrites of hippocampal neurons. Journal of Cell Science, 2004, 117, 1079-1090.	2.0	33
116	Loss of CARM1 Results in Hypomethylation of Thymocyte Cyclic AMP-regulated Phosphoprotein and Deregulated Early T Cell Development. Journal of Biological Chemistry, 2004, 279, 25339-25344.	3.4	92
117	The Nuclear Tyrosine Kinase BRK/Sik Phosphorylates and Inhibits the RNA-binding Activities of the Sam68-like Mammalian Proteins SLM-1 and SLM-2. Journal of Biological Chemistry, 2004, 279, 54398-54404.	3.4	75
118	Arginine methylation signals mRNA export. Nature Structural and Molecular Biology, 2004, 11, 914-915.	8.2	30
119	Arginine Methylation Regulates the Cytokine Response. Molecular Cell, 2004, 15, 492-494.	9.7	9
120	Sam68, the KH domain-containing superSTAR. Biochimica Et Biophysica Acta: Reviews on Cancer, 2003, 1653, 73-86.	7.4	162
121	A Proteomic Analysis of Arginine-methylated Protein Complexes. Molecular and Cellular Proteomics, 2003, 2, 1319-1330.	3.8	323
122	Sam68 RNA Binding Protein Is an In Vivo Substrate for Protein ArginineN-Methyltransferase 1. Molecular Biology of the Cell, 2003, 14, 274-287.	2.1	237
123	kep1 interacts genetically with dredd/Caspase-8, and kep1 mutants alter the balance of dredd isoforms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1814-1819.	7.1	22
124	Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. Journal of Cell Biology, 2002, 159, 957-969.	5.2	175
125	A protein-domain microarray identifies novel protein–protein interactions. Biochemical Journal, 2002, 367, 697-702.	3.7	158
126	Nuclear Retention of MBP mRNAs in the Quaking Viable Mice. Neuron, 2002, 36, 815-829.	8.1	152

#	ARTICLE	IF	CITATIONS
127	Nuclear translocation controlled by alternatively spliced isoforms inactivates the QUAKING apoptotic inducer. Genes and Development, 2001, 15, 845-858.	5.9	92
128	Arginine Methylation Inhibits the Binding of Proline-rich Ligands to Src Homology 3, but Not WW, Domains. Journal of Biological Chemistry, 2000, 275, 16030-16036.	3.4	208
129	A Role for the GSG Domain in Localizing Sam68 to Novel Nuclear Structures in Cancer Cell Lines. Molecular Biology of the Cell, 1999, 10, 3015-3033.	2.1	136
130	The Identification of Two Drosophila K Homology Domain Proteins. Journal of Biological Chemistry, 1998, 273, 30122-30130.	3.4	40
131	Regulation of cellular response to cisplatin-induced DNA damage and DNA repair in cells overexpressing p185erbB-2 is dependent on the ras signaling pathway. Oncogene, 1997, 14, 1827-1835.	5.9	40
132	p62 Association with RNA Is Regulated by Tyrosine Phosphorylation. Journal of Biological Chemistry, 1995, 270, 2010-2013.	3.4	132
133	The Influence of Arginine Methylation in Immunity and Inflammation. Journal of Inflammation Research, 0, Volume 15, 2939-2958.	3.5	12