Ashwin R Vasavada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8457106/publications.pdf

Version: 2024-02-01

88 papers 11,165 citations

53 h-index 49909 87 g-index

88 all docs 88 docs citations

88 times ranked 6122 citing authors

#	Article	IF	CITATIONS
1	The Curiosity Rover's Exploration of Glen Torridon, Gale Crater, Mars: An Overview of the Campaign and Scientific Results. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	27
2	Mars Science Laboratory. , 2022, , 1-5.		0
3	CRISMâ€Based High Spatial Resolution Thermal Inertia Mapping Along Curiosity's Traverses in Gale Crater. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	11
4	Ancient Winds, Waves, and Atmosphere in Gale Crater, Mars, Inferred From Sedimentary Structures and Wave Modeling. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	7
5	Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations. Space Science Reviews, 2022, 218, 14.	8.1	25
6	Evidence for Fluctuating Wind in Shaping an Ancient Martian Dune Field: The Stimson Formation at the Greenheugh Pediment, Gale Crater. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	17
7	A Rock Record of Complex Aeolian Bedforms in a Hesperian Desert Landscape: The Stimson Formation as Exposed in the Murray Buttes, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006554.	3.6	34
8	Day-night differences in Mars methane suggest nighttime containment at Gale crater. Astronomy and Astrophysics, 2021, 650, A166.	5.1	22
9	Brine-driven destruction of clay minerals in Gale crater, Mars. Science, 2021, 373, 198-204.	12.6	52
10	A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover. Minerals (Basel, Switzerland), 2021, 11, 847.	2.0	23
11	The Surface Energy Budget at Gale Crater During the First 2500 Sols of the Mars Science Laboratory Mission. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006804.	3.6	16
12	Thermal Forcing of the Nocturnal Near Surface Environment by Martian Water Ice Clouds. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	3
13	Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of <i>Curiosity</i> 's Exploration Campaign. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006527.	3.6	69
14	Synergistic Ground and Orbital Observations of Iron Oxides on Mt. Sharp and Vera Rubin Ridge. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006294.	3.6	27
15	Selfâ€reliant rovers for increased mission productivity. Journal of Field Robotics, 2020, 37, 1171-1196.	6.0	15
16	Curiosity Mars methane measurements are not confused by ozone. Astronomy and Astrophysics, 2020, 641, L3.	5.1	6
17	A look back, part II: The drilling campaign of the Curiosity rover during the Mars Science Laboratory's second and third martian years. Icarus, 2020, 350, 113885.	2.5	4
18	Origin and composition of three heterolithic boulder- and cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars. Icarus, 2020, 350, 113897.	2.5	11

#	Article	IF	CITATIONS
19	Advective Fluxes in the Martian Regolith as a Mechanism Driving Methane and Other Trace Gas Emissions to the Atmosphere. Geophysical Research Letters, 2020, 47, e2019GL085694.	4.0	9
20	Effects of the MY34/2018 Global Dust Storm as Measured by MSL REMS in Gale Crater. Journal of Geophysical Research E: Planets, 2019, 124, 1899-1912.	3.6	40
21	An interval of high salinity in ancient Gale crater lake on Mars. Nature Geoscience, 2019, 12, 889-895.	12.9	105
22	A surface gravity traverse on Mars indicates low bedrock density at Gale crater. Science, 2019, 363, 535-537.	12.6	49
23	Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2019, 124, 94-113.	3.6	23
24	Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm. Geophysical Research Letters, 2019, 46, 71-79.	4.0	138
25	Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology, 2018, 65, 993-1042.	3.1	143
26	Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars. Geophysical Research Letters, 2018, 45, 108-116.	4.0	23
27	The Thermophysical Properties of the Bagnold Dunes, Mars: Groundâ€Truthing Orbital Data. Journal of Geophysical Research E: Planets, 2018, 123, 1307-1326.	3.6	34
28	The Bagnold Dunes in Southern Summer: Active Sediment Transport on Mars Observed by the Curiosity Rover. Geophysical Research Letters, 2018, 45, 8853-8863.	4.0	50
29	Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars. Science Advances, 2018, 4, eaar3330.	10.3	150
30	Background levels of methane in Mars' atmosphere show strong seasonal variations. Science, 2018, 360, 1093-1096.	12.6	224
31	Mars Science Laboratory Curiosity Rover Megaripple Crossings up to Sol 710 in Gale Crater. Journal of Field Robotics, 2017, 34, 495-518.	6.0	82
32	Thermophysical properties along Curiosity's traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus, 2017, 284, 372-386.	2.5	74
33	Low Hesperian <i>P</i> _{CO2} constrained from in situ mineralogical analysis at Gale Crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2166-2170.	7.1	59
34	The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity. Space Science Reviews, 2017, 212, 295-338.	8.1	153
35	Diagenetic silica enrichment and lateâ€stage groundwater activity in Gale crater, Mars. Geophysical Research Letters, 2017, 44, 4716-4724.	4.0	87
36	Redox stratification of an ancient lake in Gale crater, Mars. Science, 2017, 356, .	12.6	209

3

#	Article	IF	CITATIONS
37	Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. Journal of Geophysical Research E: Planets, 2017, 122, 2510-2543.	3. 6	95
38	Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2-20.	3.6	60
39	Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. Icarus, 2017, 291, 203-231.	2.5	119
40	Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment. Journal of Geophysical Research E: Planets, 2017, 122, 2371-2400.	3.6	193
41	Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin Xâ€ray diffraction of the Windjana sample (Kimberley area, Gale Crater). Journal of Geophysical Research E: Planets, 2016, 121, 75-106.	3.6	159
42	The meteorology of Gale Crater as determined from Rover Environmental Monitoring Station observations and numerical modeling. Part II: Interpretation. Icarus, 2016, 280, 114-138.	2.5	81
43	Vortices in Saturn's Northern Hemisphere (2008–2015) observed by Cassini ISS. Journal of Geophysical Research E: Planets, 2016, 121, 1814-1826.	3 . 6	9
44	Transient atmospheric effects of the landing of the Mars Science Laboratory rover: The emission and dissipation of dust and carbazic acid. Advances in Space Research, 2016, 58, 1066-1092.	2.6	12
45	The meteorology of Gale crater as determined from rover environmental monitoring station observations and numerical modeling. Part I: Comparison of model simulations with observations. Icarus, 2016, 280, 103-113.	2.5	54
46	Large wind ripples on Mars: A record of atmospheric evolution. Science, 2016, 353, 55-58.	12.6	144
47	ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. Journal of Analytical Atomic Spectrometry, 2016, 31, 863-889.	3.0	134
48	Curiosity's Mission of Exploration at Gale Crater, Mars. Elements, 2015, 11, 19-26.	0.5	55
49	Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus, 2015, 249, 129-142.	2.5	66
50	Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results. Advances in Space Research, 2015, 55, 2217-2238.	2.6	28
51	Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 2015, 8, 357-361.	12.9	277
52	Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 2015, 350, aac7575.	12.6	471
53	Reconstruction of Atmospheric Properties from Mars Science Laboratory Entry, Descent, and Landing. Journal of Spacecraft and Rockets, 2014, 51, 1062-1075.	1.9	27
54	The global vortex analysis of Jupiter and Saturn based on Cassini Imaging Science Subsystem. Icarus, 2014, 242, 122-129.	2.5	13

#	Article	IF	CITATIONS
55	Curiosity's rover environmental monitoring station: Overview of the first 100 sols. Journal of Geophysical Research E: Planets, 2014, 119, 1680-1688.	3.6	112
56	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
57	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
58	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	12.6	475
59	Lunar cold spots: Granular flow features and extensive insulating materials surrounding young craters. Icarus, 2014, 231, 221-231.	2.5	54
60	Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater. Journal of Geophysical Research E: Planets, 2014, 119, 1322-1344.	3 . 6	43
61	Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. Journal of Geophysical Research E: Planets, 2014, 119, 440-453.	3.6	80
62	Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. Journal of Geophysical Research E: Planets, 2014, 119, 745-770.	3 . 6	67
63	Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond. Journal of Geophysical Research E: Planets, 2014, 119, 1134-1161.	3.6	104
64	Surface energy budget and thermal inertia at Gale Crater: Calculations from groundâ€based measurements. Journal of Geophysical Research E: Planets, 2014, 119, 1822-1838.	3.6	46
65	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
66	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
67	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	12.6	327
68	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
69	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326
70	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	12.6	134
71	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
72	Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.	12.6	103

#	Article	IF	CITATIONS
73	Mars Science Laboratory Mission and Science Investigation. Space Science Reviews, 2012, 170, 5-56.	8.1	650
74	Assessment of Environments for Mars Science Laboratory Entry, Descent, and Surface Operations. Space Science Reviews, 2012, 170, 793-835.	8.1	58
75	Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment. Journal of Geophysical Research, 2012, 117, .	3.3	229
76	Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data. Journal of Geophysical Research, 2011, 116, .	3.3	235
77	The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Space Science Reviews, 2010, 150, 125-160.	8.1	309
78	Diviner Lunar Radiometer Observations of the LCROSS Impact. Science, 2010, 330, 477-479.	12.6	68
79	Diviner Lunar Radiometer Observations of Cold Traps in the Moon's South Polar Region. Science, 2010, 330, 479-482.	12.6	385
80	Saturn's south polar vortex compared to other large vortices in the Solar System. Icarus, 2009, 202, 240-248.	2.5	50
81	Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking orbiters. Journal of Geophysical Research, 2006, 111 , .	3.3	67
82	Cassini imaging of Saturn: Southern hemisphere winds and vortices. Journal of Geophysical Research, 2006, 111, .	3.3	83
83	Cassini Imaging Science: Initial Results on Saturn's Atmosphere. Science, 2005, 307, 1243-1247.	12.6	107
84	Jovian atmospheric dynamics: an update afterGalileoandCassini. Reports on Progress in Physics, 2005, 68, 1935-1996.	20.1	276
85	Lightning on Jupiter observed in the line by the Cassini imaging science subsystem. Icarus, 2004, 172, 24-36.	2.5	76
86	Cassini Imaging of Jupiter's Atmosphere, Satellites, and Rings. Science, 2003, 299, 1541-1547.	12.6	405
87	Galileo Imaging of Jupiter's Atmosphere: The Great Red Spot, Equatorial Region, and White Ovals. Icarus, 1998, 135, 265-275.	2.5	106
88	Galileo's First Images of Jupiter and the Galilean Satellites. Science, 1996, 274, 377-385.	12.6	152