Linda F Van Dyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8455786/publications.pdf

Version: 2024-02-01

279798 361022 6,011 37 23 35 citations h-index g-index papers 42 42 42 12863 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Optimized Detection of Acute MHV68 Infection With a Reporter System Identifies Large Peritoneal Macrophages as a Dominant Target of Primary Infection. Frontiers in Microbiology, 2021, 12, 656979.	3.5	8
2	Lytic Infection with Murine Gammaherpesvirus 68 Activates Host and Viral RNA Polymerase III Promoters and Enhances Noncoding RNA Expression. Journal of Virology, 2021, 95, e0007921.	3.4	2
3	The gammaherpesvirus 68 viral cyclin facilitates expression of LANA. PLoS Pathogens, 2021, 17, e1010019.	4.7	O
4	Genome-wide Transcript Structure Resolution Reveals Abundant Alternate Isoform Usage from Murine Gammaherpesvirus 68. Cell Reports, 2019, 27, 3988-4002.e5.	6.4	32
5	Multidimensional analysis of Gammaherpesvirus RNA expression reveals unexpected heterogeneity of gene expression. PLoS Pathogens, 2019, 15, e1007849.	4.7	12
6	High-Dimensional Characterization of IL-10 Production and IL-10–Dependent Regulation during Primary Gammaherpesvirus Infection. ImmunoHorizons, 2019, 3, 94-109.	1.8	7
7	Host Tumor Suppressor p18 ^{INK4c} Functions as a Potent Cell-Intrinsic Inhibitor of Murine Gammaherpesvirus 68 Reactivation and Pathogenesis. Journal of Virology, 2018, 92, .	3.4	9
8	A Beginner's Guide to Analyzing and Visualizing Mass Cytometry Data. Journal of Immunology, 2018, 200, 3-22.	0.8	130
9	Impaired B cell function during viral infections due to PTEN-mediated inhibition of the PI3K pathway. Journal of Experimental Medicine, 2017, 214, 931-941.	8.5	21
10	A Gammaherpesvirus Noncoding RNA Is Essential for Hematogenous Dissemination and Establishment of Peripheral Latency. MSphere, 2016, 1 , .	2.9	33
11	Multifaceted Roles of the Viral Cyclin in Gammaherpesvirus Pathogenesis. Current Clinical Microbiology Reports, 2016, 3, 162-169.	3.4	O
12	Trehalose-Mediated Autophagy Impairs the Anti-Viral Function of Human Primary Airway Epithelial Cells. PLoS ONE, 2015, 10, e0124524.	2.5	20
13	A Conserved Gammaherpesvirus Cyclin Specifically Bypasses Host p18 ^{INK4c} To Promote Reactivation from Latency. Journal of Virology, 2015, 89, 10821-10831.	3.4	10
14	Gammaherpesvirus Small Noncoding RNAs Are Bifunctional Elements That Regulate Infection and Contribute to Virulence <i>In Vivo</i> . MBio, 2015, 6, e01670-14.	4.1	42
15	Virus-Encoded MicroRNAs Facilitate Gammaherpesvirus Latency and Pathogenesis <i>In Vivo</i> . MBio, 2014, 5, e00981-14.	4.1	68
16	CD4 T Cells Specific for a Latency-Associated \hat{I}^3 -Herpesvirus Epitope Are Polyfunctional and Cytotoxic. Journal of Immunology, 2014, 193, 5827-5834.	0.8	21
17	A conserved RNA polymerase III promoter required for gammaherpesvirus TMER transcription and microRNA processing. Gene, 2014, 544, 8-18.	2.2	28
18	T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3216-24.	7.1	241

#	Article	IF	CITATIONS
19	Viral Cyclins Mediate Separate Phases of Infection by Integrating Functions of Distinct Mammalian Cyclins. PLoS Pathogens, 2012, 8, e1002496.	4.7	15
20	Murine gammaherpesvirus 68 infection protects lupus-prone mice from the development of autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1092-100.	7.1	34
21	Retention of Anergy and Inhibition of Antibody Responses during Acute Gammaherpesvirus 68 Infection. Journal of Immunology, 2012, 189, 2965-2974.	0.8	13
22	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
23	Widespread occurrence of non-canonical transcription termination by human RNA polymerase III. Nucleic Acids Research, 2011, 39, 5499-5512.	14.5	64
24	Mature and functional viral miRNAs transcribed from novel RNA polymerase III promoters. Rna, 2010, 16, 170-185.	3.5	75
25	Latent Herpesvirus Infection Augments Experimental Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 465-477.	5.6	67
26	Murine Gammaherpesvirus 68 Infection of Gamma Interferon-Deficient Mice on a BALB/c Background Results in Acute Lethal Pneumonia That Is Dependent on Specific Viral Genes. Journal of Virology, 2009, 83, 11397-11401.	3.4	24
27	Murine Gammaherpesvirus 68 Infection of IFNγ Unresponsive Mice: A Small Animal Model for Gammaherpesvirus-Associated B-Cell Lymphoproliferative Disease. Cancer Research, 2009, 69, 5481-5489.	0.9	38
28	Exacerbation of Established Pulmonary Fibrosis in a Murine Model by Gammaherpesvirus. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 771-780.	5.6	99
29	Identification of microRNAs of the herpesvirus family. Nature Methods, 2005, 2, 269-276.	19.0	1,073
30	Non-malignant clonal expansions of CD8+ memory T cells in aged individuals. Immunological Reviews, 2005, 205, 170-189.	6.0	69
31	A Surface Groove Essential for Viral Bcl-2 Function During Chronic Infection In Vivo. PLoS Pathogens, 2005, 1, e10.	4.7	61
32	Maintenance of Gammaherpesvirus Latency Requires Viral Cyclin in the Absence of B Lymphocytes. Journal of Virology, 2003, 77, 5118-5126.	3.4	41
33	Immune Control of the Number and Reactivation Phenotype of Cells Latently Infected with a Gammaherpesvirus. Journal of Virology, 2002, 76, 7125-7132.	3.4	99
34	Identification of the In Vivo Role of a Viral bcl-2. Journal of Experimental Medicine, 2002, 195, 931-940.	8.5	119
35	The Murine Gammaherpesvirus 68 v-Cyclin Is a Critical Regulator of Reactivation from Latency. Journal of Virology, 2000, 74, 7451-7461.	3.4	117
36	The Murine Gammaherpesvirus 68 v-Cyclin Gene Is an Oncogene That Promotes Cell Cycle Progression in Primary Lymphocytes. Journal of Virology, 1999, 73, 5110-5122.	3.4	82

#	Article	IF	CITATIONS
37	TCR Antigen–Induced Cell Death Occurs from a Late G1 Phase Cell Cycle Check Point. Immunity, 1998, 8, 57-65.	14.3	112