Matthew J Goupell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8455671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transfer and/or Breakup Modes in theH6e+B209iReaction near the Coulomb Barrier. Physical Review Letters, 2000, 84, 5058-5061.	7.8	185
2	Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant users. Journal of the Acoustical Society of America, 2013, 134, 2923-2936.	1.1	135
3	Studies on Bilateral Cochlear Implants at the University of Wisconsin's Binaural Hearing and Speech Laboratory. Journal of the American Academy of Audiology, 2012, 23, 476-494.	0.7	120
4	Effect of mismatched place-of-stimulation on the salience of binaural cues in conditions that simulate bilateral cochlear-implant listening. Journal of the Acoustical Society of America, 2013, 133, 2272-2287.	1.1	94
5	3-D localization of virtual sound sources: Effects of visual environment, pointing method, and training. Attention, Perception, and Psychophysics, 2010, 72, 454-469.	1.3	89
6	Having Two Ears Facilitates the Perceptual Separation of Concurrent Talkers for Bilateral and Single-Sided Deaf Cochlear Implantees. Ear and Hearing, 2016, 37, 289-302.	2.1	73
7	Effects of Interaural Pitch Matching and Auditory Image Centering on Binaural Sensitivity in Cochlear Implant Users. Ear and Hearing, 2015, 36, e62-e68.	2.1	64
8	Two-Dimensional Localization of Virtual Sound Sources in Cochlear-Implant Listeners. Ear and Hearing, 2011, 32, 198-208.	2.1	52
9	Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners. Journal of the Acoustical Society of America, 2014, 136, 1246-1256.	1.1	45
10	Interaural fluctuations and the detection of interaural incoherence: Bandwidth effects. Journal of the Acoustical Society of America, 2006, 119, 3971-3986.	1.1	38
11	Age-Related Differences in the Processing of Temporal Envelope and Spectral Cues in a Speech Segment. Ear and Hearing, 2017, 38, e335-e342.	2.1	37
12	Enhancing and unmasking the harmonics of a complex tone. Journal of the Acoustical Society of America, 2006, 120, 2142-2157.	1.1	36
13	Bilateral Loudness Balancing and Distorted Spatial Perception in Recipients of Bilateral Cochlear Implants. Ear and Hearing, 2015, 36, e225-e236.	2.1	35
14	Contralateral Interference Caused by Binaurally Presented Competing Speech in Adult Bilateral Cochlear-Implant Users. Ear and Hearing, 2018, 39, 110-123.	2.1	33
15	Interaural fluctuations and the detection of interaural incoherence. III. Narrowband experiments and binaural models. Journal of the Acoustical Society of America, 2007, 122, 1029-1045.	1.1	32
16	Mapping procedures can produce non-centered auditory images in bilateral cochlear implantees. Journal of the Acoustical Society of America, 2013, 133, EL101-EL107.	1.1	32
17	Binaural sensitivity in children who use bilateral cochlear implants. Journal of the Acoustical Society of America, 2017, 141, 4264-4277.	1.1	32
18	Use of Research Interfaces for Psychophysical Studies With Cochlear-Implant Users. Trends in Hearing, 2017, 21, 233121651773646.	1.3	30

#	Article	IF	CITATIONS
19	Spatial attention in bilateral cochlear-implant users. Journal of the Acoustical Society of America, 2016, 140, 1652-1662.	1.1	29
20	Interaural envelope correlation change discrimination in bilateral cochlear implantees: Effects of mismatch, centering, and onset of deafness. Journal of the Acoustical Society of America, 2015, 137, 1282-1297.	1.1	27
21	Age Effects on Neural Representation and Perception of Silence Duration Cues in Speech. Journal of Speech, Language, and Hearing Research, 2019, 62, 1099-1116.	1.6	26
22	Median-plane sound localization as a function of the number of spectral channels using a channel vocoder. Journal of the Acoustical Society of America, 2010, 127, 990-1001.	1.1	25
23	Interaural Time-Difference Discrimination as a Measure of Place of Stimulation for Cochlear-Implant Users With Single-Sided Deafness. Trends in Hearing, 2018, 22, 233121651876551.	1.3	24
24	The Effect of Simulated Interaural Frequency Mismatch on Speech Understanding and Spatial Release From Masking. Ear and Hearing, 2018, 39, 895-905.	2.1	24
25	Enhancing sensitivity to interaural time differences at high modulation rates by introducing temporal jitter. Journal of the Acoustical Society of America, 2009, 126, 2511-2521.	1.1	23
26	Sensitivity to interaural envelope correlation changes in bilateral cochlear-implant users. Journal of the Acoustical Society of America, 2015, 137, 335-349.	1.1	22
27	Time-Varying Distortions of Binaural Information by Bilateral Hearing Aids. Trends in Hearing, 2016, 20, 233121651666830.	1.3	22
28	Effect of channel separation and interaural mismatch on fusion and lateralization in normal-hearing and cochlear-implant listeners. Journal of the Acoustical Society of America, 2019, 146, 1448-1463.	1.1	22
29	Interaural Pitch-Discrimination Range Effects for Bilateral and Single-Sided-Deafness Cochlear-Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 187-203.	1.8	22
30	Effects of upper-frequency boundary and spectral warping on speech intelligibility in electrical stimulation. Journal of the Acoustical Society of America, 2008, 123, 2295-2309.	1.1	21
31	The role of envelope statistics in detecting changes in interaural correlation. Journal of the Acoustical Society of America, 2012, 132, 1561-1572.	1.1	18
32	Evidence for a neural source of the precedence effect in sound localization. Journal of Neurophysiology, 2015, 114, 2991-3001.	1.8	18
33	Effects of rate and age in processing interaural time and level differences in normal-hearing and bilateral cochlear-implant listeners. Journal of the Acoustical Society of America, 2019, 146, 3232-3254.	1.1	18
34	Lateralization of Interaural Level Differences with Multiple Electrode Stimulation in Bilateral Cochlear-Implant Listeners. Ear and Hearing, 2017, 38, e22-e38.	2.1	17
35	Effect of Stimulation Rate on Speech Understanding in Older Cochlear-Implant Users. Ear and Hearing, 2020, 41, 640-651.	2.1	17
36	Age-Related Compensation Mechanism Revealed in the Cortical Representation of Degraded Speech. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21, 373-391.	1.8	17

#	Article	IF	CITATIONS
37	Current-level discrimination and spectral profile analysis in multi-channel electrical stimulation. Journal of the Acoustical Society of America, 2008, 124, 3142-3157.	1.1	16
38	The Effect of Interaural Fluctuation Rate on Correlation Change Discrimination. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 115-129.	1.8	16
39	Acoustic Hearing Can Interfere With Single-Sided Deafness Cochlear-Implant Speech Perception. Ear and Hearing, 2020, 41, 747-761.	2.1	16
40	Age-related differences in binaural masking level differences: behavioral and electrophysiological evidence. Journal of Neurophysiology, 2018, 120, 2939-2952.	1.8	15
41	Interaural Place-of-Stimulation Mismatch Estimates Using CT Scans and Binaural Perception, But Not Pitch, Are Consistent in Cochlear-Implant Users. Journal of Neuroscience, 2021, 41, 10161-10178.	3.6	15
42	Age-Related Temporal Processing Deficits in Word Segments in Adult Cochlear-Implant Users. Trends in Hearing, 2019, 23, 233121651988668.	1.3	14
43	Binaural release from masking with single- and multi-electrode stimulation in children with cochlear implants. Journal of the Acoustical Society of America, 2016, 140, 59-73.	1.1	13
44	Speech Perception in Noise with a Harmonic Complex Excited Vocoder. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 265-278.	1.8	12
45	Binaural Optimization of Cochlear Implants: Discarding Frequency Content Without Sacrificing Head-Shadow Benefit. Ear and Hearing, 2020, 41, 576-590.	2.1	12
46	Impact of Aging and the Electrode-to-Neural Interface on Temporal Processing Ability in Cochlear-Implant Users: Gap Detection Thresholds. Trends in Hearing, 2020, 24, 233121652095656.	1.3	12
47	Evidence of the enhancement effect in electrical stimulation via electrode matching (L). Journal of the Acoustical Society of America, 2012, 131, 1007-1010.	1.1	11
48	Speech perception in simulated electric hearing exploits information-bearing acoustic change. Journal of the Acoustical Society of America, 2013, 133, EL136-EL141.	1.1	11
49	Vocoded speech perception with simulated shallow insertion depths in adults and children. Journal of the Acoustical Society of America, 2017, 141, EL45-EL50.	1.1	11
50	Acoustic factors affecting interaural level differences for cochlear-implant users. Journal of the Acoustical Society of America, 2020, 147, EL357-EL362.	1.1	11
51	Using prosody to infer discourse prominence in cochlear-implant users and normal-hearing listeners. Cognition, 2017, 166, 184-200.	2.2	11
52	Effects of Aging on Perceptual and Electrophysiological Responses to Acoustic Pulse Trains as a Function of Rate. Journal of Speech, Language, and Hearing Research, 2019, 62, 1087-1098.	1.6	11
53	The effect of an additional reflection in a precedence effect experiment. Journal of the Acoustical Society of America, 2012, 131, 2958-2967.	1.1	10
54	Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users. Journal of Speech, Language, and Hearing Research, 2017, 60, 1398-1416.	1.6	10

#	Article	IF	CITATIONS
55	Age effects on perceptual restoration of degraded interrupted sentences. Journal of the Acoustical Society of America, 2018, 143, 84-97.	1.1	10
56	Across-channel interaural-level-difference processing demonstrates frequency dependence. Journal of the Acoustical Society of America, 2018, 143, 645-658.	1.1	10
57	Dichotic listening performance with cochlear-implant simulations of ear asymmetry is consistent with difficulty ignoring clearer speech. Attention, Perception, and Psychophysics, 2021, 83, 2083-2101.	1.3	10
58	Impact of Aging and the Electrode-to-Neural Interface on Temporal Processing Ability in Cochlear-Implant Users: Amplitude-Modulation Detection Thresholds. Trends in Hearing, 2020, 24, 233121652093616.	1.3	9
59	Interaural fluctuations and the detection of interaural incoherence. II. Brief duration noises. Journal of the Acoustical Society of America, 2007, 121, 2127-2136.	1.1	8
60	The Relationship Between Intensity Coding and Binaural Sensitivity in Adults With Cochlear Implants. Ear and Hearing, 2017, 38, e128-e141.	2.1	8
61	Recognition of Accented Speech by Cochlear-Implant Listeners: Benefit of Audiovisual Cues. Ear and Hearing, 2020, 41, 1236-1250.	2.1	8
62	Spectral-Temporal Trade-Off in Vocoded Sentence Recognition: Effects of Age, Hearing Thresholds, and Working Memory. Ear and Hearing, 2020, 41, 1226-1235.	2.1	8
63	Transmission of Binaural Cues by Bilateral Cochlear Implants: Examining the Impacts of Bilaterally Independent Spectral Peak-Picking, Pulse Timing, and Compression. Trends in Hearing, 2021, 25, 233121652110304.	1.3	8
64	Binaural unmasking with temporal envelope and fine structure in listeners with cochlear implants. Journal of the Acoustical Society of America, 2019, 145, 2982-2993.	1.1	7
65	Auditory Attention and Spatial Unmasking in Children With Cochlear Implants. Trends in Hearing, 2020, 24, 233121652094698.	1.3	7
66	Hearing with Cochlear Implants and Hearing Aids in Complex Auditory Scenes. Springer Handbook of Auditory Research, 2017, , 261-291.	0.7	7
67	Interaural fluctuations and the detection of interaural incoherence. IV. The effect of compression on stimulus statistics. Journal of the Acoustical Society of America, 2010, 128, 3691-3702.	1.1	6
68	Across-Frequency Processing of Interaural Time and Level Differences in Perceived Lateralization. Acta Acustica United With Acustica, 2018, 104, 758-761.	0.8	6
69	Effect of Chronological Age on Pulse Rate Discrimination in Adult Cochlear-Implant Users. Trends in Hearing, 2021, 25, 233121652110073.	1.3	6
70	Computed-Tomography Estimates of Interaural Mismatch in Insertion Depth and Scalar Location in Bilateral Cochlear-Implant Users. Otology and Neurotology, 2022, 43, 666-675.	1.3	6
71	Spectral and temporal resolutions of information-bearing acoustic changes for understanding vocoded sentences. Journal of the Acoustical Society of America, 2015, 137, 844-855.	1.1	5
72	Effects of Stimulus Duration on Event-Related Potentials Recorded From Cochlear-Implant Users. Ear and Hearing, 2017, 38, e389-e393.	2.1	5

#	Article	IF	CITATIONS
73	Head Shadow, Summation, and Squelch in Bilateral Cochlear-Implant Users With Linked Automatic Gain Controls. Trends in Hearing, 2021, 25, 233121652110181.	1.3	5
74	Recognition of vocoded words and sentences in quiet and multi-talker babble with children and adults. PLoS ONE, 2020, 15, e0244632.	2.5	5
75	Untrained listeners experience difficulty detecting interaural correlation changes in narrowband noises. Journal of the Acoustical Society of America, 2015, 138, EL120-EL125.	1.1	4
76	Memory Span for Spoken Digits in Adults With Cochlear Implants or Typical Hearing: Effects of Age and Identification Ability. Journal of Speech, Language, and Hearing Research, 2018, 61, 2099-2114.	1.6	4
77	Bimodal Cochlear Implant Listeners' Ability to Perceive Minimal Audible Angle Differences. Journal of the American Academy of Audiology, 2019, 30, 659-671.	0.7	4
78	Audiovisual Speech Recognition With a Cochlear Implant and Increased Perceptual and Cognitive Demands. Trends in Hearing, 2020, 24, 233121652096060.	1.3	4
79	A Comparison of Place-Pitch-Based Interaural Electrode Matching Methods for Bilateral Cochlear-Implant Users. Trends in Hearing, 2021, 25, 233121652199732.	1.3	4
80	Aging Effects on Cortical Responses to Tones and Speech in Adult Cochlear-Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 719-740.	1.8	4
81	Dichotic listening performance and effort as a function of spectral resolution and interaural symmetry. Journal of the Acoustical Society of America, 2021, 150, 920-935.	1.1	4
82	Effects of aging and hearing loss on perceptual and electrophysiological measures of pulse-rate discrimination. Journal of the Acoustical Society of America, 2022, 151, 1639-1650.	1.1	4
83	Internalized elevation perception of simple stimuli in cochlear-implant and normal-hearing listeners. Journal of the Acoustical Society of America, 2014, 136, 841-852.	1.1	3
84	Benefits of triple acoustic beamforming during speech-on-speech masking and sound localization for bilateral cochlear-implant users. Journal of the Acoustical Society of America, 2021, 149, 3052-3072.	1.1	3
85	Binaural Hearing and Across-Channel Processing. Springer Handbook of Auditory Research, 2021, , 181-207.	0.7	3
86	The effect of envelope modulations on binaural processing. Hearing Research, 2019, 379, 117-127.	2.0	2
87	Access to semantic cues does not lead to perceptual restoration of interrupted speech in cochlear-implant users. Journal of the Acoustical Society of America, 2021, 149, 1488-1497.	1.1	2
88	Accuracy and cue use in word segmentation for cochlear-implant listeners and normal-hearing listeners presented vocoded speech. Journal of the Acoustical Society of America, 2021, 150, 2936-2951.	1.1	1
89	Intracranial lateralization bias observed in the presence of symmetrical hearing thresholds. JASA Express Letters, 2021, 1, 104401.	1.1	1
90	Children's syntactic parsing and sentence comprehension with a degraded auditory signal. Journal of the Acoustical Society of America, 2022, 151, 699-711.	1.1	1

#	Article	IF	CITATIONS
91	Open-Set Phoneme Recognition Performance With Varied Temporal Cues in Younger and Older Cochlear Implant Users. Journal of Speech, Language, and Hearing Research, 2022, 65, 1196-1211.	1.6	1
92	The effect of target and interferer frequency on across-frequency binaural interference of interaural-level-difference sensitivity. Journal of the Acoustical Society of America, 2022, 151, 924-938.	1.1	1
93	Interaural-time-difference thresholds for broad band-limited pulses are affected by relative bandwidth not temporal envelope sharpness. JASA Express Letters, 2021, 1, 124401.	1.1	1
94	Letter to the Editor: Possible Sex Effects on the Processing of Temporal Cues in Word Segments in Adult Cochlear-Implant Users. Trends in Hearing, 2020, 24, 233121652094667.	1.3	0
95	Stimulus context affects the phonemic categorization of temporally based word contrasts in adult cochlear-implant users. Journal of the Acoustical Society of America, 2022, 151, 2149-2158.	1.1	0
96	Impacts of signal processing factors on perceptual restoration in cochlear-implant users. Journal of the Acoustical Society of America, 2022, 151, 2898-2915.	1.1	0